Loading…

Observation of phonon Stark effect

Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether ot...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-05, Vol.15 (1), p.4586-9, Article 4586
Main Authors: Huang, Zhiheng, Bai, Yunfei, Zhao, Yanchong, Liu, Le, Zhao, Xuan, Wu, Jiangbin, Watanabe, Kenji, Taniguchi, Takashi, Yang, Wei, Shi, Dongxia, Xu, Yang, Zhang, Tiantian, Zhang, Qingming, Tan, Ping-Heng, Sun, Zhipei, Meng, Sheng, Wang, Yaxian, Du, Luojun, Zhang, Guangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3
cites cdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3
container_end_page 9
container_issue 1
container_start_page 4586
container_title Nature communications
container_volume 15
creator Huang, Zhiheng
Bai, Yunfei
Zhao, Yanchong
Liu, Le
Zhao, Xuan
Wu, Jiangbin
Watanabe, Kenji
Taniguchi, Takashi
Yang, Wei
Shi, Dongxia
Xu, Yang
Zhang, Tiantian
Zhang, Qingming
Tan, Ping-Heng
Sun, Zhipei
Meng, Sheng
Wang, Yaxian
Du, Luojun
Zhang, Guangyu
description Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2 H -MoS 2 . The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A 2u . Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations. The authors report experimental evidence of phonon Stark effect in 2 H -MoS 2 bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field.
doi_str_mv 10.1038/s41467-024-48992-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c788f889cc0d443f8dfcdaac3c11333c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c788f889cc0d443f8dfcdaac3c11333c</doaj_id><sourcerecordid>3062527829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</originalsourceid><addsrcrecordid>eNp9kTtPHDEURq0oUUCEP5AiWpGGZhJf-3ptVyhCBJCQKAK15fFjmWV2vNizIP59DEN4FXHjK_vc48dHyFegP4By9bMg4Fw2lGGDSmvW3H0g24wiNCAZ__iq3iK7pSxpHVyDQvxMtrhSAELpbbJ33paQb-3YpWGW4mx9lYZa_Rltvp6FGIMbv5BP0fYl7D7NO-Ty99HF4Ulzdn58evjrrHEoYWy0tJFqQA6uBSqEoPUsxnwruKdz6YUI2gdUPlgq5opZiUrYoBEjbSlGvkNOJ69PdmnWuVvZfG-S7czjQsoLY_PYuT4YJ5WKSmnnqEfkUfnovLWOOwDOuauug8m13rSr4F0Yxmz7N9K3O0N3ZRbp1kAVSEBRDftPhpxuNqGMZtUVF_reDiFtiuF0zgSTiumKfn-HLtMmD_WvHigQiIKpSrGJcjmVkkN8vg1Q8xCpmSI1NVLzGKm5q03fXr_jueVfgBXgE1Dq1rAI-eXs_2j_Am69qpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061544528</pqid></control><display><type>article</type><title>Observation of phonon Stark effect</title><source>Nature_系列刊</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Zhiheng ; Bai, Yunfei ; Zhao, Yanchong ; Liu, Le ; Zhao, Xuan ; Wu, Jiangbin ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Wei ; Shi, Dongxia ; Xu, Yang ; Zhang, Tiantian ; Zhang, Qingming ; Tan, Ping-Heng ; Sun, Zhipei ; Meng, Sheng ; Wang, Yaxian ; Du, Luojun ; Zhang, Guangyu</creator><creatorcontrib>Huang, Zhiheng ; Bai, Yunfei ; Zhao, Yanchong ; Liu, Le ; Zhao, Xuan ; Wu, Jiangbin ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Wei ; Shi, Dongxia ; Xu, Yang ; Zhang, Tiantian ; Zhang, Qingming ; Tan, Ping-Heng ; Sun, Zhipei ; Meng, Sheng ; Wang, Yaxian ; Du, Luojun ; Zhang, Guangyu</creatorcontrib><description>Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2 H -MoS 2 . The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A 2u . Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations. The authors report experimental evidence of phonon Stark effect in 2 H -MoS 2 bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-48992-w</identifier><identifier>PMID: 38811589</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/133 ; 639/301 ; 639/766/119 ; Acoustics ; Electric fields ; Electrons ; Excitons ; Graphene ; Humanities and Social Sciences ; Interlayers ; Laboratories ; Materials science ; Molybdenum disulfide ; multidisciplinary ; Optoelectronics ; Phonons ; Physics ; Quantum dots ; Quantum theory ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Stark effect ; Technological change ; Theoretical physics ; Zeeman effect</subject><ispartof>Nature communications, 2024-05, Vol.15 (1), p.4586-9, Article 4586</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</citedby><cites>FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</cites><orcidid>0000-0003-4223-8677 ; 0000-0001-6575-1516 ; 0000-0002-8751-7082 ; 0000-0002-1242-4391 ; 0000-0003-4790-2880 ; 0000-0002-6004-2988 ; 0000-0002-3925-0352 ; 0000-0002-1553-1432 ; 0000-0002-9771-5293 ; 0000-0003-3701-8119 ; 0000-0002-1467-3105 ; 0000-0002-2420-8258 ; 0000-0002-8591-2652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3061544528/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3061544528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38811589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhiheng</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Zhao, Yanchong</creatorcontrib><creatorcontrib>Liu, Le</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Wu, Jiangbin</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Zhang, Tiantian</creatorcontrib><creatorcontrib>Zhang, Qingming</creatorcontrib><creatorcontrib>Tan, Ping-Heng</creatorcontrib><creatorcontrib>Sun, Zhipei</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Wang, Yaxian</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><title>Observation of phonon Stark effect</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2 H -MoS 2 . The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A 2u . Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations. The authors report experimental evidence of phonon Stark effect in 2 H -MoS 2 bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field.</description><subject>119/118</subject><subject>140/133</subject><subject>639/301</subject><subject>639/766/119</subject><subject>Acoustics</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Interlayers</subject><subject>Laboratories</subject><subject>Materials science</subject><subject>Molybdenum disulfide</subject><subject>multidisciplinary</subject><subject>Optoelectronics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Stark effect</subject><subject>Technological change</subject><subject>Theoretical physics</subject><subject>Zeeman effect</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtPHDEURq0oUUCEP5AiWpGGZhJf-3ptVyhCBJCQKAK15fFjmWV2vNizIP59DEN4FXHjK_vc48dHyFegP4By9bMg4Fw2lGGDSmvW3H0g24wiNCAZ__iq3iK7pSxpHVyDQvxMtrhSAELpbbJ33paQb-3YpWGW4mx9lYZa_Rltvp6FGIMbv5BP0fYl7D7NO-Ty99HF4Ulzdn58evjrrHEoYWy0tJFqQA6uBSqEoPUsxnwruKdz6YUI2gdUPlgq5opZiUrYoBEjbSlGvkNOJ69PdmnWuVvZfG-S7czjQsoLY_PYuT4YJ5WKSmnnqEfkUfnovLWOOwDOuauug8m13rSr4F0Yxmz7N9K3O0N3ZRbp1kAVSEBRDftPhpxuNqGMZtUVF_reDiFtiuF0zgSTiumKfn-HLtMmD_WvHigQiIKpSrGJcjmVkkN8vg1Q8xCpmSI1NVLzGKm5q03fXr_jueVfgBXgE1Dq1rAI-eXs_2j_Am69qpQ</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Huang, Zhiheng</creator><creator>Bai, Yunfei</creator><creator>Zhao, Yanchong</creator><creator>Liu, Le</creator><creator>Zhao, Xuan</creator><creator>Wu, Jiangbin</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Yang, Wei</creator><creator>Shi, Dongxia</creator><creator>Xu, Yang</creator><creator>Zhang, Tiantian</creator><creator>Zhang, Qingming</creator><creator>Tan, Ping-Heng</creator><creator>Sun, Zhipei</creator><creator>Meng, Sheng</creator><creator>Wang, Yaxian</creator><creator>Du, Luojun</creator><creator>Zhang, Guangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4223-8677</orcidid><orcidid>https://orcid.org/0000-0001-6575-1516</orcidid><orcidid>https://orcid.org/0000-0002-8751-7082</orcidid><orcidid>https://orcid.org/0000-0002-1242-4391</orcidid><orcidid>https://orcid.org/0000-0003-4790-2880</orcidid><orcidid>https://orcid.org/0000-0002-6004-2988</orcidid><orcidid>https://orcid.org/0000-0002-3925-0352</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0002-9771-5293</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-2420-8258</orcidid><orcidid>https://orcid.org/0000-0002-8591-2652</orcidid></search><sort><creationdate>20240529</creationdate><title>Observation of phonon Stark effect</title><author>Huang, Zhiheng ; Bai, Yunfei ; Zhao, Yanchong ; Liu, Le ; Zhao, Xuan ; Wu, Jiangbin ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Wei ; Shi, Dongxia ; Xu, Yang ; Zhang, Tiantian ; Zhang, Qingming ; Tan, Ping-Heng ; Sun, Zhipei ; Meng, Sheng ; Wang, Yaxian ; Du, Luojun ; Zhang, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>119/118</topic><topic>140/133</topic><topic>639/301</topic><topic>639/766/119</topic><topic>Acoustics</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Interlayers</topic><topic>Laboratories</topic><topic>Materials science</topic><topic>Molybdenum disulfide</topic><topic>multidisciplinary</topic><topic>Optoelectronics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Stark effect</topic><topic>Technological change</topic><topic>Theoretical physics</topic><topic>Zeeman effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhiheng</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Zhao, Yanchong</creatorcontrib><creatorcontrib>Liu, Le</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Wu, Jiangbin</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Zhang, Tiantian</creatorcontrib><creatorcontrib>Zhang, Qingming</creatorcontrib><creatorcontrib>Tan, Ping-Heng</creatorcontrib><creatorcontrib>Sun, Zhipei</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Wang, Yaxian</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhiheng</au><au>Bai, Yunfei</au><au>Zhao, Yanchong</au><au>Liu, Le</au><au>Zhao, Xuan</au><au>Wu, Jiangbin</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Yang, Wei</au><au>Shi, Dongxia</au><au>Xu, Yang</au><au>Zhang, Tiantian</au><au>Zhang, Qingming</au><au>Tan, Ping-Heng</au><au>Sun, Zhipei</au><au>Meng, Sheng</au><au>Wang, Yaxian</au><au>Du, Luojun</au><au>Zhang, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of phonon Stark effect</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4586</spage><epage>9</epage><pages>4586-9</pages><artnum>4586</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2 H -MoS 2 . The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A 2u . Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations. The authors report experimental evidence of phonon Stark effect in 2 H -MoS 2 bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38811589</pmid><doi>10.1038/s41467-024-48992-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4223-8677</orcidid><orcidid>https://orcid.org/0000-0001-6575-1516</orcidid><orcidid>https://orcid.org/0000-0002-8751-7082</orcidid><orcidid>https://orcid.org/0000-0002-1242-4391</orcidid><orcidid>https://orcid.org/0000-0003-4790-2880</orcidid><orcidid>https://orcid.org/0000-0002-6004-2988</orcidid><orcidid>https://orcid.org/0000-0002-3925-0352</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0002-9771-5293</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-2420-8258</orcidid><orcidid>https://orcid.org/0000-0002-8591-2652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-05, Vol.15 (1), p.4586-9, Article 4586
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c788f889cc0d443f8dfcdaac3c11333c
source Nature_系列刊; Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
140/133
639/301
639/766/119
Acoustics
Electric fields
Electrons
Excitons
Graphene
Humanities and Social Sciences
Interlayers
Laboratories
Materials science
Molybdenum disulfide
multidisciplinary
Optoelectronics
Phonons
Physics
Quantum dots
Quantum theory
Science
Science (multidisciplinary)
Spectrum analysis
Stark effect
Technological change
Theoretical physics
Zeeman effect
title Observation of phonon Stark effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20phonon%20Stark%20effect&rft.jtitle=Nature%20communications&rft.au=Huang,%20Zhiheng&rft.date=2024-05-29&rft.volume=15&rft.issue=1&rft.spage=4586&rft.epage=9&rft.pages=4586-9&rft.artnum=4586&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-48992-w&rft_dat=%3Cproquest_doaj_%3E3062527829%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061544528&rft_id=info:pmid/38811589&rfr_iscdi=true