Loading…
Observation of phonon Stark effect
Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether ot...
Saved in:
Published in: | Nature communications 2024-05, Vol.15 (1), p.4586-9, Article 4586 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 4586 |
container_title | Nature communications |
container_volume | 15 |
creator | Huang, Zhiheng Bai, Yunfei Zhao, Yanchong Liu, Le Zhao, Xuan Wu, Jiangbin Watanabe, Kenji Taniguchi, Takashi Yang, Wei Shi, Dongxia Xu, Yang Zhang, Tiantian Zhang, Qingming Tan, Ping-Heng Sun, Zhipei Meng, Sheng Wang, Yaxian Du, Luojun Zhang, Guangyu |
description | Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2
H
-MoS
2
. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon
A
2u
. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.
The authors report experimental evidence of phonon Stark effect in 2
H
-MoS
2
bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field. |
doi_str_mv | 10.1038/s41467-024-48992-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c788f889cc0d443f8dfcdaac3c11333c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c788f889cc0d443f8dfcdaac3c11333c</doaj_id><sourcerecordid>3062527829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</originalsourceid><addsrcrecordid>eNp9kTtPHDEURq0oUUCEP5AiWpGGZhJf-3ptVyhCBJCQKAK15fFjmWV2vNizIP59DEN4FXHjK_vc48dHyFegP4By9bMg4Fw2lGGDSmvW3H0g24wiNCAZ__iq3iK7pSxpHVyDQvxMtrhSAELpbbJ33paQb-3YpWGW4mx9lYZa_Rltvp6FGIMbv5BP0fYl7D7NO-Ty99HF4Ulzdn58evjrrHEoYWy0tJFqQA6uBSqEoPUsxnwruKdz6YUI2gdUPlgq5opZiUrYoBEjbSlGvkNOJ69PdmnWuVvZfG-S7czjQsoLY_PYuT4YJ5WKSmnnqEfkUfnovLWOOwDOuauug8m13rSr4F0Yxmz7N9K3O0N3ZRbp1kAVSEBRDftPhpxuNqGMZtUVF_reDiFtiuF0zgSTiumKfn-HLtMmD_WvHigQiIKpSrGJcjmVkkN8vg1Q8xCpmSI1NVLzGKm5q03fXr_jueVfgBXgE1Dq1rAI-eXs_2j_Am69qpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061544528</pqid></control><display><type>article</type><title>Observation of phonon Stark effect</title><source>Nature_系列刊</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Zhiheng ; Bai, Yunfei ; Zhao, Yanchong ; Liu, Le ; Zhao, Xuan ; Wu, Jiangbin ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Wei ; Shi, Dongxia ; Xu, Yang ; Zhang, Tiantian ; Zhang, Qingming ; Tan, Ping-Heng ; Sun, Zhipei ; Meng, Sheng ; Wang, Yaxian ; Du, Luojun ; Zhang, Guangyu</creator><creatorcontrib>Huang, Zhiheng ; Bai, Yunfei ; Zhao, Yanchong ; Liu, Le ; Zhao, Xuan ; Wu, Jiangbin ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Wei ; Shi, Dongxia ; Xu, Yang ; Zhang, Tiantian ; Zhang, Qingming ; Tan, Ping-Heng ; Sun, Zhipei ; Meng, Sheng ; Wang, Yaxian ; Du, Luojun ; Zhang, Guangyu</creatorcontrib><description>Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2
H
-MoS
2
. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon
A
2u
. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.
The authors report experimental evidence of phonon Stark effect in 2
H
-MoS
2
bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-48992-w</identifier><identifier>PMID: 38811589</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/133 ; 639/301 ; 639/766/119 ; Acoustics ; Electric fields ; Electrons ; Excitons ; Graphene ; Humanities and Social Sciences ; Interlayers ; Laboratories ; Materials science ; Molybdenum disulfide ; multidisciplinary ; Optoelectronics ; Phonons ; Physics ; Quantum dots ; Quantum theory ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Stark effect ; Technological change ; Theoretical physics ; Zeeman effect</subject><ispartof>Nature communications, 2024-05, Vol.15 (1), p.4586-9, Article 4586</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</citedby><cites>FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</cites><orcidid>0000-0003-4223-8677 ; 0000-0001-6575-1516 ; 0000-0002-8751-7082 ; 0000-0002-1242-4391 ; 0000-0003-4790-2880 ; 0000-0002-6004-2988 ; 0000-0002-3925-0352 ; 0000-0002-1553-1432 ; 0000-0002-9771-5293 ; 0000-0003-3701-8119 ; 0000-0002-1467-3105 ; 0000-0002-2420-8258 ; 0000-0002-8591-2652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3061544528/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3061544528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38811589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhiheng</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Zhao, Yanchong</creatorcontrib><creatorcontrib>Liu, Le</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Wu, Jiangbin</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Zhang, Tiantian</creatorcontrib><creatorcontrib>Zhang, Qingming</creatorcontrib><creatorcontrib>Tan, Ping-Heng</creatorcontrib><creatorcontrib>Sun, Zhipei</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Wang, Yaxian</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><title>Observation of phonon Stark effect</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2
H
-MoS
2
. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon
A
2u
. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.
The authors report experimental evidence of phonon Stark effect in 2
H
-MoS
2
bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field.</description><subject>119/118</subject><subject>140/133</subject><subject>639/301</subject><subject>639/766/119</subject><subject>Acoustics</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Interlayers</subject><subject>Laboratories</subject><subject>Materials science</subject><subject>Molybdenum disulfide</subject><subject>multidisciplinary</subject><subject>Optoelectronics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Stark effect</subject><subject>Technological change</subject><subject>Theoretical physics</subject><subject>Zeeman effect</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtPHDEURq0oUUCEP5AiWpGGZhJf-3ptVyhCBJCQKAK15fFjmWV2vNizIP59DEN4FXHjK_vc48dHyFegP4By9bMg4Fw2lGGDSmvW3H0g24wiNCAZ__iq3iK7pSxpHVyDQvxMtrhSAELpbbJ33paQb-3YpWGW4mx9lYZa_Rltvp6FGIMbv5BP0fYl7D7NO-Ty99HF4Ulzdn58evjrrHEoYWy0tJFqQA6uBSqEoPUsxnwruKdz6YUI2gdUPlgq5opZiUrYoBEjbSlGvkNOJ69PdmnWuVvZfG-S7czjQsoLY_PYuT4YJ5WKSmnnqEfkUfnovLWOOwDOuauug8m13rSr4F0Yxmz7N9K3O0N3ZRbp1kAVSEBRDftPhpxuNqGMZtUVF_reDiFtiuF0zgSTiumKfn-HLtMmD_WvHigQiIKpSrGJcjmVkkN8vg1Q8xCpmSI1NVLzGKm5q03fXr_jueVfgBXgE1Dq1rAI-eXs_2j_Am69qpQ</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Huang, Zhiheng</creator><creator>Bai, Yunfei</creator><creator>Zhao, Yanchong</creator><creator>Liu, Le</creator><creator>Zhao, Xuan</creator><creator>Wu, Jiangbin</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Yang, Wei</creator><creator>Shi, Dongxia</creator><creator>Xu, Yang</creator><creator>Zhang, Tiantian</creator><creator>Zhang, Qingming</creator><creator>Tan, Ping-Heng</creator><creator>Sun, Zhipei</creator><creator>Meng, Sheng</creator><creator>Wang, Yaxian</creator><creator>Du, Luojun</creator><creator>Zhang, Guangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4223-8677</orcidid><orcidid>https://orcid.org/0000-0001-6575-1516</orcidid><orcidid>https://orcid.org/0000-0002-8751-7082</orcidid><orcidid>https://orcid.org/0000-0002-1242-4391</orcidid><orcidid>https://orcid.org/0000-0003-4790-2880</orcidid><orcidid>https://orcid.org/0000-0002-6004-2988</orcidid><orcidid>https://orcid.org/0000-0002-3925-0352</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0002-9771-5293</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-2420-8258</orcidid><orcidid>https://orcid.org/0000-0002-8591-2652</orcidid></search><sort><creationdate>20240529</creationdate><title>Observation of phonon Stark effect</title><author>Huang, Zhiheng ; Bai, Yunfei ; Zhao, Yanchong ; Liu, Le ; Zhao, Xuan ; Wu, Jiangbin ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Wei ; Shi, Dongxia ; Xu, Yang ; Zhang, Tiantian ; Zhang, Qingming ; Tan, Ping-Heng ; Sun, Zhipei ; Meng, Sheng ; Wang, Yaxian ; Du, Luojun ; Zhang, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>119/118</topic><topic>140/133</topic><topic>639/301</topic><topic>639/766/119</topic><topic>Acoustics</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Interlayers</topic><topic>Laboratories</topic><topic>Materials science</topic><topic>Molybdenum disulfide</topic><topic>multidisciplinary</topic><topic>Optoelectronics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Stark effect</topic><topic>Technological change</topic><topic>Theoretical physics</topic><topic>Zeeman effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhiheng</creatorcontrib><creatorcontrib>Bai, Yunfei</creatorcontrib><creatorcontrib>Zhao, Yanchong</creatorcontrib><creatorcontrib>Liu, Le</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Wu, Jiangbin</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Zhang, Tiantian</creatorcontrib><creatorcontrib>Zhang, Qingming</creatorcontrib><creatorcontrib>Tan, Ping-Heng</creatorcontrib><creatorcontrib>Sun, Zhipei</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Wang, Yaxian</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhiheng</au><au>Bai, Yunfei</au><au>Zhao, Yanchong</au><au>Liu, Le</au><au>Zhao, Xuan</au><au>Wu, Jiangbin</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Yang, Wei</au><au>Shi, Dongxia</au><au>Xu, Yang</au><au>Zhang, Tiantian</au><au>Zhang, Qingming</au><au>Tan, Ping-Heng</au><au>Sun, Zhipei</au><au>Meng, Sheng</au><au>Wang, Yaxian</au><au>Du, Luojun</au><au>Zhang, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of phonon Stark effect</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4586</spage><epage>9</epage><pages>4586-9</pages><artnum>4586</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2
H
-MoS
2
. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon
A
2u
. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.
The authors report experimental evidence of phonon Stark effect in 2
H
-MoS
2
bilayers. A Stark phonon appears as the interlayer excitons are tuned to resonate with the LA phonon emission line, and shows a linear energy shift upon application of an out-of-plane electric field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38811589</pmid><doi>10.1038/s41467-024-48992-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4223-8677</orcidid><orcidid>https://orcid.org/0000-0001-6575-1516</orcidid><orcidid>https://orcid.org/0000-0002-8751-7082</orcidid><orcidid>https://orcid.org/0000-0002-1242-4391</orcidid><orcidid>https://orcid.org/0000-0003-4790-2880</orcidid><orcidid>https://orcid.org/0000-0002-6004-2988</orcidid><orcidid>https://orcid.org/0000-0002-3925-0352</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0002-9771-5293</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-2420-8258</orcidid><orcidid>https://orcid.org/0000-0002-8591-2652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-05, Vol.15 (1), p.4586-9, Article 4586 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c788f889cc0d443f8dfcdaac3c11333c |
source | Nature_系列刊; Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 140/133 639/301 639/766/119 Acoustics Electric fields Electrons Excitons Graphene Humanities and Social Sciences Interlayers Laboratories Materials science Molybdenum disulfide multidisciplinary Optoelectronics Phonons Physics Quantum dots Quantum theory Science Science (multidisciplinary) Spectrum analysis Stark effect Technological change Theoretical physics Zeeman effect |
title | Observation of phonon Stark effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20phonon%20Stark%20effect&rft.jtitle=Nature%20communications&rft.au=Huang,%20Zhiheng&rft.date=2024-05-29&rft.volume=15&rft.issue=1&rft.spage=4586&rft.epage=9&rft.pages=4586-9&rft.artnum=4586&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-48992-w&rft_dat=%3Cproquest_doaj_%3E3062527829%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-97af091431cb10555084422db53d067d55e9de48dea05682a7485ae944f0b04f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061544528&rft_id=info:pmid/38811589&rfr_iscdi=true |