Loading…

Hybrid Intrusion Detection System for DDoS Attacks

Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detectio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrical and computer engineering 2016-01, Vol.2016 (2016), p.1-8
Main Authors: Cepheli, Özge, Karabulut Kurt, Güneş, Büyükçorak, Saliha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3
cites cdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3
container_end_page 8
container_issue 2016
container_start_page 1
container_title Journal of electrical and computer engineering
container_volume 2016
creator Cepheli, Özge
Karabulut Kurt, Güneş
Büyükçorak, Saliha
description Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.
doi_str_mv 10.1155/2016/1075648
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c7c1f9b7f9134badb14c8d2d195185ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7c1f9b7f9134badb14c8d2d195185ca</doaj_id><sourcerecordid>4025502201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</originalsourceid><addsrcrecordid>eNqFkU1LBDEMhgdRUNSbZxnwIuhq0o9texTXjwXBg3ounU6rs-5Ote0i--_tOqLgxVwSkoeXJG9VHSCcIXJ-TgDH5wiCj5ncqHYIKBhBGWz-1ExsV_spzaAEVUpwulOR21UTu7ae9jkuUxf6euKys3ldPaxSdovah1hPJuGhvsjZ2Ne0V215M09u_zvvVk_XV4-Xt6O7-5vp5cXdyHBF88gb7kRLJWmVIlJCo8aMCk-hQcqREQRFlWTglfeqYcZSK7GBsr0qI-LpbjUddNtgZvotdgsTVzqYTn81QnzWJubOzp22wmIREV4hZY1pG2RWtqRFxVFya4rW8aD1FsP70qWsF12ybj43vQvLpFGCBIEIrKBHf9BZWMa-XKpRSGSSEKSFOh0oG0NK0fmfBRH02g-99kN_-1HwkwF_6frWfHT_0YcD7QrjvPmlEcrHOP0EHBSPZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781482213</pqid></control><display><type>article</type><title>Hybrid Intrusion Detection System for DDoS Attacks</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Cepheli, Özge ; Karabulut Kurt, Güneş ; Büyükçorak, Saliha</creator><contributor>Ceccarelli, Andrea</contributor><creatorcontrib>Cepheli, Özge ; Karabulut Kurt, Güneş ; Büyükçorak, Saliha ; Ceccarelli, Andrea</creatorcontrib><description>Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.</description><identifier>ISSN: 2090-0147</identifier><identifier>EISSN: 2090-0155</identifier><identifier>DOI: 10.1155/2016/1075648</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Computer information security ; Denial of service attacks ; Detectors ; Hybrid systems ; Internet ; Intrusion</subject><ispartof>Journal of electrical and computer engineering, 2016-01, Vol.2016 (2016), p.1-8</ispartof><rights>Copyright © 2016 Özge Cepheli et al.</rights><rights>Copyright © 2016 Özge Cepheli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</citedby><cites>FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1781482213/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1781482213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><contributor>Ceccarelli, Andrea</contributor><creatorcontrib>Cepheli, Özge</creatorcontrib><creatorcontrib>Karabulut Kurt, Güneş</creatorcontrib><creatorcontrib>Büyükçorak, Saliha</creatorcontrib><title>Hybrid Intrusion Detection System for DDoS Attacks</title><title>Journal of electrical and computer engineering</title><description>Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.</description><subject>Accuracy</subject><subject>Computer information security</subject><subject>Denial of service attacks</subject><subject>Detectors</subject><subject>Hybrid systems</subject><subject>Internet</subject><subject>Intrusion</subject><issn>2090-0147</issn><issn>2090-0155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1LBDEMhgdRUNSbZxnwIuhq0o9texTXjwXBg3ounU6rs-5Ote0i--_tOqLgxVwSkoeXJG9VHSCcIXJ-TgDH5wiCj5ncqHYIKBhBGWz-1ExsV_spzaAEVUpwulOR21UTu7ae9jkuUxf6euKys3ldPaxSdovah1hPJuGhvsjZ2Ne0V215M09u_zvvVk_XV4-Xt6O7-5vp5cXdyHBF88gb7kRLJWmVIlJCo8aMCk-hQcqREQRFlWTglfeqYcZSK7GBsr0qI-LpbjUddNtgZvotdgsTVzqYTn81QnzWJubOzp22wmIREV4hZY1pG2RWtqRFxVFya4rW8aD1FsP70qWsF12ybj43vQvLpFGCBIEIrKBHf9BZWMa-XKpRSGSSEKSFOh0oG0NK0fmfBRH02g-99kN_-1HwkwF_6frWfHT_0YcD7QrjvPmlEcrHOP0EHBSPZA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Cepheli, Özge</creator><creator>Karabulut Kurt, Güneş</creator><creator>Büyükçorak, Saliha</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Hybrid Intrusion Detection System for DDoS Attacks</title><author>Cepheli, Özge ; Karabulut Kurt, Güneş ; Büyükçorak, Saliha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Computer information security</topic><topic>Denial of service attacks</topic><topic>Detectors</topic><topic>Hybrid systems</topic><topic>Internet</topic><topic>Intrusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cepheli, Özge</creatorcontrib><creatorcontrib>Karabulut Kurt, Güneş</creatorcontrib><creatorcontrib>Büyükçorak, Saliha</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cepheli, Özge</au><au>Karabulut Kurt, Güneş</au><au>Büyükçorak, Saliha</au><au>Ceccarelli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Intrusion Detection System for DDoS Attacks</atitle><jtitle>Journal of electrical and computer engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2090-0147</issn><eissn>2090-0155</eissn><abstract>Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/1075648</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-0147
ispartof Journal of electrical and computer engineering, 2016-01, Vol.2016 (2016), p.1-8
issn 2090-0147
2090-0155
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c7c1f9b7f9134badb14c8d2d195185ca
source Publicly Available Content Database; Wiley Open Access
subjects Accuracy
Computer information security
Denial of service attacks
Detectors
Hybrid systems
Internet
Intrusion
title Hybrid Intrusion Detection System for DDoS Attacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Intrusion%20Detection%20System%20for%20DDoS%20Attacks&rft.jtitle=Journal%20of%20electrical%20and%20computer%20engineering&rft.au=Cepheli,%20%C3%96zge&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2090-0147&rft.eissn=2090-0155&rft_id=info:doi/10.1155/2016/1075648&rft_dat=%3Cproquest_doaj_%3E4025502201%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781482213&rft_id=info:pmid/&rfr_iscdi=true