Loading…
Hybrid Intrusion Detection System for DDoS Attacks
Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detectio...
Saved in:
Published in: | Journal of electrical and computer engineering 2016-01, Vol.2016 (2016), p.1-8 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3 |
container_end_page | 8 |
container_issue | 2016 |
container_start_page | 1 |
container_title | Journal of electrical and computer engineering |
container_volume | 2016 |
creator | Cepheli, Özge Karabulut Kurt, Güneş Büyükçorak, Saliha |
description | Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection. |
doi_str_mv | 10.1155/2016/1075648 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c7c1f9b7f9134badb14c8d2d195185ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7c1f9b7f9134badb14c8d2d195185ca</doaj_id><sourcerecordid>4025502201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</originalsourceid><addsrcrecordid>eNqFkU1LBDEMhgdRUNSbZxnwIuhq0o9texTXjwXBg3ounU6rs-5Ote0i--_tOqLgxVwSkoeXJG9VHSCcIXJ-TgDH5wiCj5ncqHYIKBhBGWz-1ExsV_spzaAEVUpwulOR21UTu7ae9jkuUxf6euKys3ldPaxSdovah1hPJuGhvsjZ2Ne0V215M09u_zvvVk_XV4-Xt6O7-5vp5cXdyHBF88gb7kRLJWmVIlJCo8aMCk-hQcqREQRFlWTglfeqYcZSK7GBsr0qI-LpbjUddNtgZvotdgsTVzqYTn81QnzWJubOzp22wmIREV4hZY1pG2RWtqRFxVFya4rW8aD1FsP70qWsF12ybj43vQvLpFGCBIEIrKBHf9BZWMa-XKpRSGSSEKSFOh0oG0NK0fmfBRH02g-99kN_-1HwkwF_6frWfHT_0YcD7QrjvPmlEcrHOP0EHBSPZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781482213</pqid></control><display><type>article</type><title>Hybrid Intrusion Detection System for DDoS Attacks</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Cepheli, Özge ; Karabulut Kurt, Güneş ; Büyükçorak, Saliha</creator><contributor>Ceccarelli, Andrea</contributor><creatorcontrib>Cepheli, Özge ; Karabulut Kurt, Güneş ; Büyükçorak, Saliha ; Ceccarelli, Andrea</creatorcontrib><description>Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.</description><identifier>ISSN: 2090-0147</identifier><identifier>EISSN: 2090-0155</identifier><identifier>DOI: 10.1155/2016/1075648</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Computer information security ; Denial of service attacks ; Detectors ; Hybrid systems ; Internet ; Intrusion</subject><ispartof>Journal of electrical and computer engineering, 2016-01, Vol.2016 (2016), p.1-8</ispartof><rights>Copyright © 2016 Özge Cepheli et al.</rights><rights>Copyright © 2016 Özge Cepheli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</citedby><cites>FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1781482213/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1781482213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><contributor>Ceccarelli, Andrea</contributor><creatorcontrib>Cepheli, Özge</creatorcontrib><creatorcontrib>Karabulut Kurt, Güneş</creatorcontrib><creatorcontrib>Büyükçorak, Saliha</creatorcontrib><title>Hybrid Intrusion Detection System for DDoS Attacks</title><title>Journal of electrical and computer engineering</title><description>Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.</description><subject>Accuracy</subject><subject>Computer information security</subject><subject>Denial of service attacks</subject><subject>Detectors</subject><subject>Hybrid systems</subject><subject>Internet</subject><subject>Intrusion</subject><issn>2090-0147</issn><issn>2090-0155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1LBDEMhgdRUNSbZxnwIuhq0o9texTXjwXBg3ounU6rs-5Ote0i--_tOqLgxVwSkoeXJG9VHSCcIXJ-TgDH5wiCj5ncqHYIKBhBGWz-1ExsV_spzaAEVUpwulOR21UTu7ae9jkuUxf6euKys3ldPaxSdovah1hPJuGhvsjZ2Ne0V215M09u_zvvVk_XV4-Xt6O7-5vp5cXdyHBF88gb7kRLJWmVIlJCo8aMCk-hQcqREQRFlWTglfeqYcZSK7GBsr0qI-LpbjUddNtgZvotdgsTVzqYTn81QnzWJubOzp22wmIREV4hZY1pG2RWtqRFxVFya4rW8aD1FsP70qWsF12ybj43vQvLpFGCBIEIrKBHf9BZWMa-XKpRSGSSEKSFOh0oG0NK0fmfBRH02g-99kN_-1HwkwF_6frWfHT_0YcD7QrjvPmlEcrHOP0EHBSPZA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Cepheli, Özge</creator><creator>Karabulut Kurt, Güneş</creator><creator>Büyükçorak, Saliha</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Hybrid Intrusion Detection System for DDoS Attacks</title><author>Cepheli, Özge ; Karabulut Kurt, Güneş ; Büyükçorak, Saliha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Computer information security</topic><topic>Denial of service attacks</topic><topic>Detectors</topic><topic>Hybrid systems</topic><topic>Internet</topic><topic>Intrusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cepheli, Özge</creatorcontrib><creatorcontrib>Karabulut Kurt, Güneş</creatorcontrib><creatorcontrib>Büyükçorak, Saliha</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cepheli, Özge</au><au>Karabulut Kurt, Güneş</au><au>Büyükçorak, Saliha</au><au>Ceccarelli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Intrusion Detection System for DDoS Attacks</atitle><jtitle>Journal of electrical and computer engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2090-0147</issn><eissn>2090-0155</eissn><abstract>Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/1075648</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-0147 |
ispartof | Journal of electrical and computer engineering, 2016-01, Vol.2016 (2016), p.1-8 |
issn | 2090-0147 2090-0155 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c7c1f9b7f9134badb14c8d2d195185ca |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Accuracy Computer information security Denial of service attacks Detectors Hybrid systems Internet Intrusion |
title | Hybrid Intrusion Detection System for DDoS Attacks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Intrusion%20Detection%20System%20for%20DDoS%20Attacks&rft.jtitle=Journal%20of%20electrical%20and%20computer%20engineering&rft.au=Cepheli,%20%C3%96zge&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2090-0147&rft.eissn=2090-0155&rft_id=info:doi/10.1155/2016/1075648&rft_dat=%3Cproquest_doaj_%3E4025502201%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a593t-fa5e7d382d992880b96437f30b13514210939840f9ff9b4ac3c81b064891092f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781482213&rft_id=info:pmid/&rfr_iscdi=true |