Loading…
Automatic Fake News Detection for Romanian Online News
This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolution...
Saved in:
Published in: | Information (Basel) 2022-03, Vol.13 (3), p.151 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83 |
container_end_page | |
container_issue | 3 |
container_start_page | 151 |
container_title | Information (Basel) |
container_volume | 13 |
creator | Buzea, Marius Cristian Trausan-Matu, Stefan Rebedea, Traian |
description | This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges. |
doi_str_mv | 10.3390/info13030151 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c7cf59ab0b7844bf80fcd2412a79f943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7cf59ab0b7844bf80fcd2412a79f943</doaj_id><sourcerecordid>2642428538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb35Axa8uprvZI-l2looFkTPIZvNyNY2qckW8d-7dUU6lxlmHu-9eQhdE3zHWIXv2wCRMMwwEeQMjShWuqRcV-cn8yWa5LzBfSmluSYjJKeHLu5s17pibj988ey_cvHgO--6NoYCYipe-ntobSjWYduGAXKFLsBus5_89TF6mz--zp7K1XqxnE1XpWNSdWUtsHCqIaRhTAKtPAjX1Kr3Y4E4a6UEIb1iAKCBa8yIlE6BxdAcS7MxWg68TbQbs0_tzqZvE21rfhcxvRubevNbb5xyICpb47p_jdegMbiGckKtqqDirOe6Gbj2KX4efO7MJh5S6O0bKjnlVAt2VLwdUC7FnJOHf1WCzTFocxo0-wHjgm_W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642428538</pqid></control><display><type>article</type><title>Automatic Fake News Detection for Romanian Online News</title><source>Publicly Available Content Database</source><creator>Buzea, Marius Cristian ; Trausan-Matu, Stefan ; Rebedea, Traian</creator><creatorcontrib>Buzea, Marius Cristian ; Trausan-Matu, Stefan ; Rebedea, Traian</creatorcontrib><description>This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges.</description><identifier>ISSN: 2078-2489</identifier><identifier>EISSN: 2078-2489</identifier><identifier>DOI: 10.3390/info13030151</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Classification ; Coders ; convolutional neural network ; Data mining ; Datasets ; Deep learning ; Experiments ; fake news ; False information ; Information sources ; Language ; Machine learning ; Natural language processing ; Neural networks ; News ; Recurrent neural networks ; RoBERT ; Sentiment analysis ; Social networks ; Support vector machines</subject><ispartof>Information (Basel), 2022-03, Vol.13 (3), p.151</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</citedby><cites>FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</cites><orcidid>0000-0001-8082-8497 ; 0000-0002-7255-5537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642428538/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642428538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Buzea, Marius Cristian</creatorcontrib><creatorcontrib>Trausan-Matu, Stefan</creatorcontrib><creatorcontrib>Rebedea, Traian</creatorcontrib><title>Automatic Fake News Detection for Romanian Online News</title><title>Information (Basel)</title><description>This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Coders</subject><subject>convolutional neural network</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Experiments</subject><subject>fake news</subject><subject>False information</subject><subject>Information sources</subject><subject>Language</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>News</subject><subject>Recurrent neural networks</subject><subject>RoBERT</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Support vector machines</subject><issn>2078-2489</issn><issn>2078-2489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqb35Axa8uprvZI-l2looFkTPIZvNyNY2qckW8d-7dUU6lxlmHu-9eQhdE3zHWIXv2wCRMMwwEeQMjShWuqRcV-cn8yWa5LzBfSmluSYjJKeHLu5s17pibj988ey_cvHgO--6NoYCYipe-ntobSjWYduGAXKFLsBus5_89TF6mz--zp7K1XqxnE1XpWNSdWUtsHCqIaRhTAKtPAjX1Kr3Y4E4a6UEIb1iAKCBa8yIlE6BxdAcS7MxWg68TbQbs0_tzqZvE21rfhcxvRubevNbb5xyICpb47p_jdegMbiGckKtqqDirOe6Gbj2KX4efO7MJh5S6O0bKjnlVAt2VLwdUC7FnJOHf1WCzTFocxo0-wHjgm_W</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Buzea, Marius Cristian</creator><creator>Trausan-Matu, Stefan</creator><creator>Rebedea, Traian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8082-8497</orcidid><orcidid>https://orcid.org/0000-0002-7255-5537</orcidid></search><sort><creationdate>20220301</creationdate><title>Automatic Fake News Detection for Romanian Online News</title><author>Buzea, Marius Cristian ; Trausan-Matu, Stefan ; Rebedea, Traian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Coders</topic><topic>convolutional neural network</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Experiments</topic><topic>fake news</topic><topic>False information</topic><topic>Information sources</topic><topic>Language</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>News</topic><topic>Recurrent neural networks</topic><topic>RoBERT</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buzea, Marius Cristian</creatorcontrib><creatorcontrib>Trausan-Matu, Stefan</creatorcontrib><creatorcontrib>Rebedea, Traian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Information (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buzea, Marius Cristian</au><au>Trausan-Matu, Stefan</au><au>Rebedea, Traian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Fake News Detection for Romanian Online News</atitle><jtitle>Information (Basel)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>13</volume><issue>3</issue><spage>151</spage><pages>151-</pages><issn>2078-2489</issn><eissn>2078-2489</eissn><abstract>This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/info13030151</doi><orcidid>https://orcid.org/0000-0001-8082-8497</orcidid><orcidid>https://orcid.org/0000-0002-7255-5537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2078-2489 |
ispartof | Information (Basel), 2022-03, Vol.13 (3), p.151 |
issn | 2078-2489 2078-2489 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c7cf59ab0b7844bf80fcd2412a79f943 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Artificial intelligence Artificial neural networks Classification Coders convolutional neural network Data mining Datasets Deep learning Experiments fake news False information Information sources Language Machine learning Natural language processing Neural networks News Recurrent neural networks RoBERT Sentiment analysis Social networks Support vector machines |
title | Automatic Fake News Detection for Romanian Online News |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Fake%20News%20Detection%20for%20Romanian%20Online%20News&rft.jtitle=Information%20(Basel)&rft.au=Buzea,%20Marius%20Cristian&rft.date=2022-03-01&rft.volume=13&rft.issue=3&rft.spage=151&rft.pages=151-&rft.issn=2078-2489&rft.eissn=2078-2489&rft_id=info:doi/10.3390/info13030151&rft_dat=%3Cproquest_doaj_%3E2642428538%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642428538&rft_id=info:pmid/&rfr_iscdi=true |