Loading…

Automatic Fake News Detection for Romanian Online News

This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolution...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) 2022-03, Vol.13 (3), p.151
Main Authors: Buzea, Marius Cristian, Trausan-Matu, Stefan, Rebedea, Traian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83
cites cdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83
container_end_page
container_issue 3
container_start_page 151
container_title Information (Basel)
container_volume 13
creator Buzea, Marius Cristian
Trausan-Matu, Stefan
Rebedea, Traian
description This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges.
doi_str_mv 10.3390/info13030151
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c7cf59ab0b7844bf80fcd2412a79f943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7cf59ab0b7844bf80fcd2412a79f943</doaj_id><sourcerecordid>2642428538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb35Axa8uprvZI-l2looFkTPIZvNyNY2qckW8d-7dUU6lxlmHu-9eQhdE3zHWIXv2wCRMMwwEeQMjShWuqRcV-cn8yWa5LzBfSmluSYjJKeHLu5s17pibj988ey_cvHgO--6NoYCYipe-ntobSjWYduGAXKFLsBus5_89TF6mz--zp7K1XqxnE1XpWNSdWUtsHCqIaRhTAKtPAjX1Kr3Y4E4a6UEIb1iAKCBa8yIlE6BxdAcS7MxWg68TbQbs0_tzqZvE21rfhcxvRubevNbb5xyICpb47p_jdegMbiGckKtqqDirOe6Gbj2KX4efO7MJh5S6O0bKjnlVAt2VLwdUC7FnJOHf1WCzTFocxo0-wHjgm_W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642428538</pqid></control><display><type>article</type><title>Automatic Fake News Detection for Romanian Online News</title><source>Publicly Available Content Database</source><creator>Buzea, Marius Cristian ; Trausan-Matu, Stefan ; Rebedea, Traian</creator><creatorcontrib>Buzea, Marius Cristian ; Trausan-Matu, Stefan ; Rebedea, Traian</creatorcontrib><description>This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges.</description><identifier>ISSN: 2078-2489</identifier><identifier>EISSN: 2078-2489</identifier><identifier>DOI: 10.3390/info13030151</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Classification ; Coders ; convolutional neural network ; Data mining ; Datasets ; Deep learning ; Experiments ; fake news ; False information ; Information sources ; Language ; Machine learning ; Natural language processing ; Neural networks ; News ; Recurrent neural networks ; RoBERT ; Sentiment analysis ; Social networks ; Support vector machines</subject><ispartof>Information (Basel), 2022-03, Vol.13 (3), p.151</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</citedby><cites>FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</cites><orcidid>0000-0001-8082-8497 ; 0000-0002-7255-5537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642428538/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642428538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Buzea, Marius Cristian</creatorcontrib><creatorcontrib>Trausan-Matu, Stefan</creatorcontrib><creatorcontrib>Rebedea, Traian</creatorcontrib><title>Automatic Fake News Detection for Romanian Online News</title><title>Information (Basel)</title><description>This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Coders</subject><subject>convolutional neural network</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Experiments</subject><subject>fake news</subject><subject>False information</subject><subject>Information sources</subject><subject>Language</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>News</subject><subject>Recurrent neural networks</subject><subject>RoBERT</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Support vector machines</subject><issn>2078-2489</issn><issn>2078-2489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqb35Axa8uprvZI-l2looFkTPIZvNyNY2qckW8d-7dUU6lxlmHu-9eQhdE3zHWIXv2wCRMMwwEeQMjShWuqRcV-cn8yWa5LzBfSmluSYjJKeHLu5s17pibj988ey_cvHgO--6NoYCYipe-ntobSjWYduGAXKFLsBus5_89TF6mz--zp7K1XqxnE1XpWNSdWUtsHCqIaRhTAKtPAjX1Kr3Y4E4a6UEIb1iAKCBa8yIlE6BxdAcS7MxWg68TbQbs0_tzqZvE21rfhcxvRubevNbb5xyICpb47p_jdegMbiGckKtqqDirOe6Gbj2KX4efO7MJh5S6O0bKjnlVAt2VLwdUC7FnJOHf1WCzTFocxo0-wHjgm_W</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Buzea, Marius Cristian</creator><creator>Trausan-Matu, Stefan</creator><creator>Rebedea, Traian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8082-8497</orcidid><orcidid>https://orcid.org/0000-0002-7255-5537</orcidid></search><sort><creationdate>20220301</creationdate><title>Automatic Fake News Detection for Romanian Online News</title><author>Buzea, Marius Cristian ; Trausan-Matu, Stefan ; Rebedea, Traian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Coders</topic><topic>convolutional neural network</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Experiments</topic><topic>fake news</topic><topic>False information</topic><topic>Information sources</topic><topic>Language</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>News</topic><topic>Recurrent neural networks</topic><topic>RoBERT</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buzea, Marius Cristian</creatorcontrib><creatorcontrib>Trausan-Matu, Stefan</creatorcontrib><creatorcontrib>Rebedea, Traian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Information (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buzea, Marius Cristian</au><au>Trausan-Matu, Stefan</au><au>Rebedea, Traian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Fake News Detection for Romanian Online News</atitle><jtitle>Information (Basel)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>13</volume><issue>3</issue><spage>151</spage><pages>151-</pages><issn>2078-2489</issn><eissn>2078-2489</eissn><abstract>This paper proposes a supervised machine learning system to detect fake news in online sources published in Romanian. Additionally, this work presents a comparison of the obtained results by using recurrent neural networks based on long short-term memory and gated recurrent unit cells, a convolutional neural network, and a Bidirectional Encoder Representations from Transformers (BERT) model, namely RoBERT, a pre-trained Romanian BERT model. The deep learning architectures are compared with the results achieved by two classical classification algorithms: Naïve Bayes and Support Vector Machine. The proposed approach is based on a Romanian news corpus containing 25,841 true news items and 13,064 fake news items. The best result is over 98.20%, achieved by the convolutional neural network, which outperforms the standard classification methods and the BERT models. Moreover, based on irony detection and sentiment analysis systems, additional details are revealed about the irony phenomenon and sentiment analysis field which are used to tackle fake news challenges.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/info13030151</doi><orcidid>https://orcid.org/0000-0001-8082-8497</orcidid><orcidid>https://orcid.org/0000-0002-7255-5537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2078-2489
ispartof Information (Basel), 2022-03, Vol.13 (3), p.151
issn 2078-2489
2078-2489
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c7cf59ab0b7844bf80fcd2412a79f943
source Publicly Available Content Database
subjects Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Classification
Coders
convolutional neural network
Data mining
Datasets
Deep learning
Experiments
fake news
False information
Information sources
Language
Machine learning
Natural language processing
Neural networks
News
Recurrent neural networks
RoBERT
Sentiment analysis
Social networks
Support vector machines
title Automatic Fake News Detection for Romanian Online News
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Fake%20News%20Detection%20for%20Romanian%20Online%20News&rft.jtitle=Information%20(Basel)&rft.au=Buzea,%20Marius%20Cristian&rft.date=2022-03-01&rft.volume=13&rft.issue=3&rft.spage=151&rft.pages=151-&rft.issn=2078-2489&rft.eissn=2078-2489&rft_id=info:doi/10.3390/info13030151&rft_dat=%3Cproquest_doaj_%3E2642428538%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-b505c7d11d336f29ef5cdb7207af1caa66f56e73fff8f4803166c7fa0fddddd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642428538&rft_id=info:pmid/&rfr_iscdi=true