Loading…
Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data
This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a s...
Saved in:
Published in: | Applied sciences 2019-11, Vol.9 (21), p.4620 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43 |
container_end_page | |
container_issue | 21 |
container_start_page | 4620 |
container_title | Applied sciences |
container_volume | 9 |
creator | Deng, Chubo Zhang, Lifu Cen, Yi |
description | This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing. |
doi_str_mv | 10.3390/app9214620 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c7fb50a9fd264bf9a2cef445c4015037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7fb50a9fd264bf9a2cef445c4015037</doaj_id><sourcerecordid>2533680012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNQXf0HAN6E6SXazzaPWW8ELiD7HaTJpt7bNmmzV_nujFXVe5nA4fDNwiuKAw7GUGk6wbbXgpRKwUewIqFVPlrze_Ke3i_2UppBHc9nnsFM8P1AXG3rDGQueDSY0b2zW9x-rMS3YOc1x4Vg3iWE5nrDb4BrfkGMDbNNyRuyOuvcQX9gZpuyGBbtetRRTS7aLmXKOHe4VWx5nifZ_9m7xdHnxOLju3dxfDQenNz0rFe96SmmlPUgcKcK-886R0F7XgKq2TvQ1OGEhJ7hX1pJ0lrwHIXmlR8SplLvFcM11Aaemjc0c48oEbMy3EeLYYOwaOyNjaz-qALV3QpUjr1FkWFlWtgRegawz63DNamN4XVLqzDQs4yK_b0QlpeoDcJFTR-uUjSGlSP73KgfzVYj5K0R-ApnTfgc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533680012</pqid></control><display><type>article</type><title>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</title><source>Publicly Available Content Database</source><creator>Deng, Chubo ; Zhang, Lifu ; Cen, Yi</creator><creatorcontrib>Deng, Chubo ; Zhang, Lifu ; Cen, Yi</creatorcontrib><description>This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9214620</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Back propagation networks ; capsule network ; Chemical oxygen demand ; Datasets ; Deep learning ; Laboratories ; Neural networks ; Potassium ; Remote sensing ; Spectrum analysis ; Statistical analysis ; Teaching methods ; Water pollution ; Water quality</subject><ispartof>Applied sciences, 2019-11, Vol.9 (21), p.4620</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</citedby><cites>FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</cites><orcidid>0000-0002-3533-9966 ; 0000-0003-3469-5624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533680012/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533680012?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Deng, Chubo</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Cen, Yi</creatorcontrib><title>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</title><title>Applied sciences</title><description>This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing.</description><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>capsule network</subject><subject>Chemical oxygen demand</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Potassium</subject><subject>Remote sensing</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Teaching methods</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNQXf0HAN6E6SXazzaPWW8ELiD7HaTJpt7bNmmzV_nujFXVe5nA4fDNwiuKAw7GUGk6wbbXgpRKwUewIqFVPlrze_Ke3i_2UppBHc9nnsFM8P1AXG3rDGQueDSY0b2zW9x-rMS3YOc1x4Vg3iWE5nrDb4BrfkGMDbNNyRuyOuvcQX9gZpuyGBbtetRRTS7aLmXKOHe4VWx5nifZ_9m7xdHnxOLju3dxfDQenNz0rFe96SmmlPUgcKcK-886R0F7XgKq2TvQ1OGEhJ7hX1pJ0lrwHIXmlR8SplLvFcM11Aaemjc0c48oEbMy3EeLYYOwaOyNjaz-qALV3QpUjr1FkWFlWtgRegawz63DNamN4XVLqzDQs4yK_b0QlpeoDcJFTR-uUjSGlSP73KgfzVYj5K0R-ApnTfgc</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Deng, Chubo</creator><creator>Zhang, Lifu</creator><creator>Cen, Yi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3533-9966</orcidid><orcidid>https://orcid.org/0000-0003-3469-5624</orcidid></search><sort><creationdate>20191101</creationdate><title>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</title><author>Deng, Chubo ; Zhang, Lifu ; Cen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>capsule network</topic><topic>Chemical oxygen demand</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Potassium</topic><topic>Remote sensing</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Teaching methods</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Chubo</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Cen, Yi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Chubo</au><au>Zhang, Lifu</au><au>Cen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</atitle><jtitle>Applied sciences</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>21</issue><spage>4620</spage><pages>4620-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9214620</doi><orcidid>https://orcid.org/0000-0002-3533-9966</orcidid><orcidid>https://orcid.org/0000-0003-3469-5624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2019-11, Vol.9 (21), p.4620 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c7fb50a9fd264bf9a2cef445c4015037 |
source | Publicly Available Content Database |
subjects | Algorithms Back propagation networks capsule network Chemical oxygen demand Datasets Deep learning Laboratories Neural networks Potassium Remote sensing Spectrum analysis Statistical analysis Teaching methods Water pollution Water quality |
title | Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20Chemical%20Oxygen%20Demand%20through%20Modified%20Capsule%20Network%20Based%20on%20Hyperspectral%20Data&rft.jtitle=Applied%20sciences&rft.au=Deng,%20Chubo&rft.date=2019-11-01&rft.volume=9&rft.issue=21&rft.spage=4620&rft.pages=4620-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9214620&rft_dat=%3Cproquest_doaj_%3E2533680012%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533680012&rft_id=info:pmid/&rfr_iscdi=true |