Loading…

Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data

This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a s...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-11, Vol.9 (21), p.4620
Main Authors: Deng, Chubo, Zhang, Lifu, Cen, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43
cites cdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43
container_end_page
container_issue 21
container_start_page 4620
container_title Applied sciences
container_volume 9
creator Deng, Chubo
Zhang, Lifu
Cen, Yi
description This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing.
doi_str_mv 10.3390/app9214620
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c7fb50a9fd264bf9a2cef445c4015037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7fb50a9fd264bf9a2cef445c4015037</doaj_id><sourcerecordid>2533680012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNQXf0HAN6E6SXazzaPWW8ELiD7HaTJpt7bNmmzV_nujFXVe5nA4fDNwiuKAw7GUGk6wbbXgpRKwUewIqFVPlrze_Ke3i_2UppBHc9nnsFM8P1AXG3rDGQueDSY0b2zW9x-rMS3YOc1x4Vg3iWE5nrDb4BrfkGMDbNNyRuyOuvcQX9gZpuyGBbtetRRTS7aLmXKOHe4VWx5nifZ_9m7xdHnxOLju3dxfDQenNz0rFe96SmmlPUgcKcK-886R0F7XgKq2TvQ1OGEhJ7hX1pJ0lrwHIXmlR8SplLvFcM11Aaemjc0c48oEbMy3EeLYYOwaOyNjaz-qALV3QpUjr1FkWFlWtgRegawz63DNamN4XVLqzDQs4yK_b0QlpeoDcJFTR-uUjSGlSP73KgfzVYj5K0R-ApnTfgc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533680012</pqid></control><display><type>article</type><title>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</title><source>Publicly Available Content Database</source><creator>Deng, Chubo ; Zhang, Lifu ; Cen, Yi</creator><creatorcontrib>Deng, Chubo ; Zhang, Lifu ; Cen, Yi</creatorcontrib><description>This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9214620</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Back propagation networks ; capsule network ; Chemical oxygen demand ; Datasets ; Deep learning ; Laboratories ; Neural networks ; Potassium ; Remote sensing ; Spectrum analysis ; Statistical analysis ; Teaching methods ; Water pollution ; Water quality</subject><ispartof>Applied sciences, 2019-11, Vol.9 (21), p.4620</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</citedby><cites>FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</cites><orcidid>0000-0002-3533-9966 ; 0000-0003-3469-5624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533680012/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533680012?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Deng, Chubo</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Cen, Yi</creatorcontrib><title>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</title><title>Applied sciences</title><description>This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing.</description><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>capsule network</subject><subject>Chemical oxygen demand</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Potassium</subject><subject>Remote sensing</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Teaching methods</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNQXf0HAN6E6SXazzaPWW8ELiD7HaTJpt7bNmmzV_nujFXVe5nA4fDNwiuKAw7GUGk6wbbXgpRKwUewIqFVPlrze_Ke3i_2UppBHc9nnsFM8P1AXG3rDGQueDSY0b2zW9x-rMS3YOc1x4Vg3iWE5nrDb4BrfkGMDbNNyRuyOuvcQX9gZpuyGBbtetRRTS7aLmXKOHe4VWx5nifZ_9m7xdHnxOLju3dxfDQenNz0rFe96SmmlPUgcKcK-886R0F7XgKq2TvQ1OGEhJ7hX1pJ0lrwHIXmlR8SplLvFcM11Aaemjc0c48oEbMy3EeLYYOwaOyNjaz-qALV3QpUjr1FkWFlWtgRegawz63DNamN4XVLqzDQs4yK_b0QlpeoDcJFTR-uUjSGlSP73KgfzVYj5K0R-ApnTfgc</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Deng, Chubo</creator><creator>Zhang, Lifu</creator><creator>Cen, Yi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3533-9966</orcidid><orcidid>https://orcid.org/0000-0003-3469-5624</orcidid></search><sort><creationdate>20191101</creationdate><title>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</title><author>Deng, Chubo ; Zhang, Lifu ; Cen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>capsule network</topic><topic>Chemical oxygen demand</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Potassium</topic><topic>Remote sensing</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Teaching methods</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Chubo</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Cen, Yi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Chubo</au><au>Zhang, Lifu</au><au>Cen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data</atitle><jtitle>Applied sciences</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>21</issue><spage>4620</spage><pages>4620-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This study focuses on the retrieval of chemical oxygen demand (COD) in the Baiyangdian area in North China, using a modified capsule network. Herein, the capsule model was modified to analyze the regression relationship between 1-D hyperspectral data and COD values. The results indicate there is a statistically significant correlation between COD and the hyperspectral data. The accuracy of the capsule network was compared with the results obtained from using a traditional back-propagation neural network (BP) method. The capsule network achieved superior accuracy with fewer iterations, compared with the BP algorithm. An R2 value of 0.78 was obtained against measured COD values retrieved using the capsule network method, compared with a value of 0.42 for the BP algorithm retrievals. This suggests the capsule network method has great potential to solve regression problems in the field of remote sensing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9214620</doi><orcidid>https://orcid.org/0000-0002-3533-9966</orcidid><orcidid>https://orcid.org/0000-0003-3469-5624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2019-11, Vol.9 (21), p.4620
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c7fb50a9fd264bf9a2cef445c4015037
source Publicly Available Content Database
subjects Algorithms
Back propagation networks
capsule network
Chemical oxygen demand
Datasets
Deep learning
Laboratories
Neural networks
Potassium
Remote sensing
Spectrum analysis
Statistical analysis
Teaching methods
Water pollution
Water quality
title Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20Chemical%20Oxygen%20Demand%20through%20Modified%20Capsule%20Network%20Based%20on%20Hyperspectral%20Data&rft.jtitle=Applied%20sciences&rft.au=Deng,%20Chubo&rft.date=2019-11-01&rft.volume=9&rft.issue=21&rft.spage=4620&rft.pages=4620-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9214620&rft_dat=%3Cproquest_doaj_%3E2533680012%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-66969f03ab6ea8dfdde29f970a67cd2890d2c09f01f6cce3dceff023159be1e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533680012&rft_id=info:pmid/&rfr_iscdi=true