Loading…
Regucalcin confers resistance to amyloid‐β toxicity in neuronally differentiated PC12 cells
Amyloid‐β (Aβ), a primary component of amyloid plaques, has been widely associated with the pathogenesis of Alzheimer's disease. The Ca2+‐binding protein regucalcin (RGN) plays multiple roles in maintaining cell functions by regulating intracellular calcium homeostasis, various signaling pathwa...
Saved in:
Published in: | FEBS open bio 2018-03, Vol.8 (3), p.349-360 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 360 |
container_issue | 3 |
container_start_page | 349 |
container_title | FEBS open bio |
container_volume | 8 |
creator | Murata, Tomiyasu Yamaguchi, Masayoshi Kohno, Susumu Takahashi, Chiaki Kakimoto, Mitsumi Sugimura, Yukiko Kamihara, Mako Hikita, Kiyomi Kaneda, Norio |
description | Amyloid‐β (Aβ), a primary component of amyloid plaques, has been widely associated with the pathogenesis of Alzheimer's disease. The Ca2+‐binding protein regucalcin (RGN) plays multiple roles in maintaining cell functions by regulating intracellular calcium homeostasis, various signaling pathways, and gene expression systems. Here, we investigated the functional role of RGN against Aβ‐induced cytotoxicity in neuronally differentiated PC12 cells. Overexpression of RGN reduced Aβ‐induced apoptosis by reducing mitochondrial dysfunction and caspase activation. It also attenuated Aβ‐induced reactive oxygen species production and oxidative damage and decreased Aβ‐induced nitric oxide (NO) overproduction, upregulation of inducible NO synthase by nuclear factor‐κB, and nitrosative damage. Interestingly, the genetic disruption of RGN increased the susceptibility of neuronally differentiated PC12 cells to Aβ toxicity. Thus, RGN possesses antioxidant activity against Aβ‐induced oxidative and nitrosative stress and may play protective roles against Aβ‐induced neurotoxicity in Alzheimer's disease.
Upon treatment with amyloid‐β (Aβ), the Ca2+‐binding protein regucalcin (RGN) inhibits overproduction of mitochondrial reactive oxygen species and the subsequent oxidative damage, restores mitochondrial function, and blocks apoptosis in neuronally differentiated PC12 cells. RGN also inhibits Aβ‐induced nuclear factor‐κB activation and attenuates nitric oxide (NO)‐induced nitrosative damage from inducible NO synthase. Thus, RGN exerts protective effect against Aβ toxicity. |
doi_str_mv | 10.1002/2211-5463.12374 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c7fd1b22d7ad414788b821f7e5d006fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7fd1b22d7ad414788b821f7e5d006fb</doaj_id><sourcerecordid>1010022211546312374</sourcerecordid><originalsourceid>FETCH-LOGICAL-d4434-4c8b9e8f81399b292d80c74cf85dfa197e8c25d93d65513b1d362fee4d46ecd13</originalsourceid><addsrcrecordid>eNpVkc9u1DAQxi0EolXpmRuKxHnbjP8kzgUJVi1UqgRCcMVy7PHilTcudgLkxiPwLDxIH4InwbtbVq0vHs98_o1mPkKeQ30GdU3PKQVYCN6wM6Cs5Y_I8SHz-F58RE5zXtflNDU0df2UHNFOADRAj8mXj7iajA7GD5WJg8OUq4TZ51EPBqsxVnozh-jt31-_b_-U909v_DhXRT7glOKgQ5gr6135icPo9Yi2-rAEWhkMIT8jT5wOGU_v7hPy-fLi0_Ld4vr926vl6-uF5ZzxBTey71A6CazretpRK2vTcuOksE5D16I0VNiO2UYIYD1Y1lCHyC1v0FhgJ-Rqz7VRr9VN8hudZhW1V7tETCul0-hNQGVaZ6Gn1LbacuCtlL2k4FoUtmzI9YX1as-6mfoNWlPGSjo8gD6sDP6rWsXvSkhGO0kL4OUdIMVvE-ZRreOUyqayYsC7YpYAUVQv7rc58P97UwTNXvDDB5wPdajV1n219Vdt_VU799XlxRu-i9g_kWajpA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149123515</pqid></control><display><type>article</type><title>Regucalcin confers resistance to amyloid‐β toxicity in neuronally differentiated PC12 cells</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Murata, Tomiyasu ; Yamaguchi, Masayoshi ; Kohno, Susumu ; Takahashi, Chiaki ; Kakimoto, Mitsumi ; Sugimura, Yukiko ; Kamihara, Mako ; Hikita, Kiyomi ; Kaneda, Norio</creator><creatorcontrib>Murata, Tomiyasu ; Yamaguchi, Masayoshi ; Kohno, Susumu ; Takahashi, Chiaki ; Kakimoto, Mitsumi ; Sugimura, Yukiko ; Kamihara, Mako ; Hikita, Kiyomi ; Kaneda, Norio</creatorcontrib><description>Amyloid‐β (Aβ), a primary component of amyloid plaques, has been widely associated with the pathogenesis of Alzheimer's disease. The Ca2+‐binding protein regucalcin (RGN) plays multiple roles in maintaining cell functions by regulating intracellular calcium homeostasis, various signaling pathways, and gene expression systems. Here, we investigated the functional role of RGN against Aβ‐induced cytotoxicity in neuronally differentiated PC12 cells. Overexpression of RGN reduced Aβ‐induced apoptosis by reducing mitochondrial dysfunction and caspase activation. It also attenuated Aβ‐induced reactive oxygen species production and oxidative damage and decreased Aβ‐induced nitric oxide (NO) overproduction, upregulation of inducible NO synthase by nuclear factor‐κB, and nitrosative damage. Interestingly, the genetic disruption of RGN increased the susceptibility of neuronally differentiated PC12 cells to Aβ toxicity. Thus, RGN possesses antioxidant activity against Aβ‐induced oxidative and nitrosative stress and may play protective roles against Aβ‐induced neurotoxicity in Alzheimer's disease.
Upon treatment with amyloid‐β (Aβ), the Ca2+‐binding protein regucalcin (RGN) inhibits overproduction of mitochondrial reactive oxygen species and the subsequent oxidative damage, restores mitochondrial function, and blocks apoptosis in neuronally differentiated PC12 cells. RGN also inhibits Aβ‐induced nuclear factor‐κB activation and attenuates nitric oxide (NO)‐induced nitrosative damage from inducible NO synthase. Thus, RGN exerts protective effect against Aβ toxicity.</description><identifier>ISSN: 2211-5463</identifier><identifier>EISSN: 2211-5463</identifier><identifier>DOI: 10.1002/2211-5463.12374</identifier><identifier>PMID: 29511612</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Alzheimer's disease ; amyloid‐β ; Apoptosis ; Breast cancer ; Calcium (intracellular) ; Calcium homeostasis ; Calcium signalling ; Calcium-binding protein ; Caspase ; Cell activation ; Cell differentiation ; CRISPR ; Cytotoxicity ; Endoplasmic reticulum ; Gene expression ; Growth factors ; Homeostasis ; Intracellular signalling ; Kinases ; Lipid peroxidation ; mitochondrial dysfunction ; Neurodegeneration ; Neurodegenerative diseases ; Neurotoxicity ; Nitric oxide ; Nitric-oxide synthase ; Oxidative stress ; Pancreatic cancer ; Pathogenesis ; Penicillin ; Pheochromocytoma cells ; Phosphatase ; Proteins ; reactive nitrogen species ; Reactive oxygen species ; Reagents ; regucalcin ; Senile plaques ; β-Amyloid</subject><ispartof>FEBS open bio, 2018-03, Vol.8 (3), p.349-360</ispartof><rights>2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.</rights><rights>Copyright John Wiley & Sons, Inc. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149123515/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149123515?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,44566,46027,46451,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29511612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murata, Tomiyasu</creatorcontrib><creatorcontrib>Yamaguchi, Masayoshi</creatorcontrib><creatorcontrib>Kohno, Susumu</creatorcontrib><creatorcontrib>Takahashi, Chiaki</creatorcontrib><creatorcontrib>Kakimoto, Mitsumi</creatorcontrib><creatorcontrib>Sugimura, Yukiko</creatorcontrib><creatorcontrib>Kamihara, Mako</creatorcontrib><creatorcontrib>Hikita, Kiyomi</creatorcontrib><creatorcontrib>Kaneda, Norio</creatorcontrib><title>Regucalcin confers resistance to amyloid‐β toxicity in neuronally differentiated PC12 cells</title><title>FEBS open bio</title><addtitle>FEBS Open Bio</addtitle><description>Amyloid‐β (Aβ), a primary component of amyloid plaques, has been widely associated with the pathogenesis of Alzheimer's disease. The Ca2+‐binding protein regucalcin (RGN) plays multiple roles in maintaining cell functions by regulating intracellular calcium homeostasis, various signaling pathways, and gene expression systems. Here, we investigated the functional role of RGN against Aβ‐induced cytotoxicity in neuronally differentiated PC12 cells. Overexpression of RGN reduced Aβ‐induced apoptosis by reducing mitochondrial dysfunction and caspase activation. It also attenuated Aβ‐induced reactive oxygen species production and oxidative damage and decreased Aβ‐induced nitric oxide (NO) overproduction, upregulation of inducible NO synthase by nuclear factor‐κB, and nitrosative damage. Interestingly, the genetic disruption of RGN increased the susceptibility of neuronally differentiated PC12 cells to Aβ toxicity. Thus, RGN possesses antioxidant activity against Aβ‐induced oxidative and nitrosative stress and may play protective roles against Aβ‐induced neurotoxicity in Alzheimer's disease.
Upon treatment with amyloid‐β (Aβ), the Ca2+‐binding protein regucalcin (RGN) inhibits overproduction of mitochondrial reactive oxygen species and the subsequent oxidative damage, restores mitochondrial function, and blocks apoptosis in neuronally differentiated PC12 cells. RGN also inhibits Aβ‐induced nuclear factor‐κB activation and attenuates nitric oxide (NO)‐induced nitrosative damage from inducible NO synthase. Thus, RGN exerts protective effect against Aβ toxicity.</description><subject>Alzheimer's disease</subject><subject>amyloid‐β</subject><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Calcium (intracellular)</subject><subject>Calcium homeostasis</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Caspase</subject><subject>Cell activation</subject><subject>Cell differentiation</subject><subject>CRISPR</subject><subject>Cytotoxicity</subject><subject>Endoplasmic reticulum</subject><subject>Gene expression</subject><subject>Growth factors</subject><subject>Homeostasis</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Lipid peroxidation</subject><subject>mitochondrial dysfunction</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurotoxicity</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Oxidative stress</subject><subject>Pancreatic cancer</subject><subject>Pathogenesis</subject><subject>Penicillin</subject><subject>Pheochromocytoma cells</subject><subject>Phosphatase</subject><subject>Proteins</subject><subject>reactive nitrogen species</subject><subject>Reactive oxygen species</subject><subject>Reagents</subject><subject>regucalcin</subject><subject>Senile plaques</subject><subject>β-Amyloid</subject><issn>2211-5463</issn><issn>2211-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc9u1DAQxi0EolXpmRuKxHnbjP8kzgUJVi1UqgRCcMVy7PHilTcudgLkxiPwLDxIH4InwbtbVq0vHs98_o1mPkKeQ30GdU3PKQVYCN6wM6Cs5Y_I8SHz-F58RE5zXtflNDU0df2UHNFOADRAj8mXj7iajA7GD5WJg8OUq4TZ51EPBqsxVnozh-jt31-_b_-U909v_DhXRT7glOKgQ5gr6135icPo9Yi2-rAEWhkMIT8jT5wOGU_v7hPy-fLi0_Ld4vr926vl6-uF5ZzxBTey71A6CazretpRK2vTcuOksE5D16I0VNiO2UYIYD1Y1lCHyC1v0FhgJ-Rqz7VRr9VN8hudZhW1V7tETCul0-hNQGVaZ6Gn1LbacuCtlL2k4FoUtmzI9YX1as-6mfoNWlPGSjo8gD6sDP6rWsXvSkhGO0kL4OUdIMVvE-ZRreOUyqayYsC7YpYAUVQv7rc58P97UwTNXvDDB5wPdajV1n219Vdt_VU799XlxRu-i9g_kWajpA</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Murata, Tomiyasu</creator><creator>Yamaguchi, Masayoshi</creator><creator>Kohno, Susumu</creator><creator>Takahashi, Chiaki</creator><creator>Kakimoto, Mitsumi</creator><creator>Sugimura, Yukiko</creator><creator>Kamihara, Mako</creator><creator>Hikita, Kiyomi</creator><creator>Kaneda, Norio</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>201803</creationdate><title>Regucalcin confers resistance to amyloid‐β toxicity in neuronally differentiated PC12 cells</title><author>Murata, Tomiyasu ; Yamaguchi, Masayoshi ; Kohno, Susumu ; Takahashi, Chiaki ; Kakimoto, Mitsumi ; Sugimura, Yukiko ; Kamihara, Mako ; Hikita, Kiyomi ; Kaneda, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d4434-4c8b9e8f81399b292d80c74cf85dfa197e8c25d93d65513b1d362fee4d46ecd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer's disease</topic><topic>amyloid‐β</topic><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Calcium (intracellular)</topic><topic>Calcium homeostasis</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Caspase</topic><topic>Cell activation</topic><topic>Cell differentiation</topic><topic>CRISPR</topic><topic>Cytotoxicity</topic><topic>Endoplasmic reticulum</topic><topic>Gene expression</topic><topic>Growth factors</topic><topic>Homeostasis</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Lipid peroxidation</topic><topic>mitochondrial dysfunction</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurotoxicity</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Oxidative stress</topic><topic>Pancreatic cancer</topic><topic>Pathogenesis</topic><topic>Penicillin</topic><topic>Pheochromocytoma cells</topic><topic>Phosphatase</topic><topic>Proteins</topic><topic>reactive nitrogen species</topic><topic>Reactive oxygen species</topic><topic>Reagents</topic><topic>regucalcin</topic><topic>Senile plaques</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murata, Tomiyasu</creatorcontrib><creatorcontrib>Yamaguchi, Masayoshi</creatorcontrib><creatorcontrib>Kohno, Susumu</creatorcontrib><creatorcontrib>Takahashi, Chiaki</creatorcontrib><creatorcontrib>Kakimoto, Mitsumi</creatorcontrib><creatorcontrib>Sugimura, Yukiko</creatorcontrib><creatorcontrib>Kamihara, Mako</creatorcontrib><creatorcontrib>Hikita, Kiyomi</creatorcontrib><creatorcontrib>Kaneda, Norio</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>FEBS open bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murata, Tomiyasu</au><au>Yamaguchi, Masayoshi</au><au>Kohno, Susumu</au><au>Takahashi, Chiaki</au><au>Kakimoto, Mitsumi</au><au>Sugimura, Yukiko</au><au>Kamihara, Mako</au><au>Hikita, Kiyomi</au><au>Kaneda, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regucalcin confers resistance to amyloid‐β toxicity in neuronally differentiated PC12 cells</atitle><jtitle>FEBS open bio</jtitle><addtitle>FEBS Open Bio</addtitle><date>2018-03</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>349</spage><epage>360</epage><pages>349-360</pages><issn>2211-5463</issn><eissn>2211-5463</eissn><abstract>Amyloid‐β (Aβ), a primary component of amyloid plaques, has been widely associated with the pathogenesis of Alzheimer's disease. The Ca2+‐binding protein regucalcin (RGN) plays multiple roles in maintaining cell functions by regulating intracellular calcium homeostasis, various signaling pathways, and gene expression systems. Here, we investigated the functional role of RGN against Aβ‐induced cytotoxicity in neuronally differentiated PC12 cells. Overexpression of RGN reduced Aβ‐induced apoptosis by reducing mitochondrial dysfunction and caspase activation. It also attenuated Aβ‐induced reactive oxygen species production and oxidative damage and decreased Aβ‐induced nitric oxide (NO) overproduction, upregulation of inducible NO synthase by nuclear factor‐κB, and nitrosative damage. Interestingly, the genetic disruption of RGN increased the susceptibility of neuronally differentiated PC12 cells to Aβ toxicity. Thus, RGN possesses antioxidant activity against Aβ‐induced oxidative and nitrosative stress and may play protective roles against Aβ‐induced neurotoxicity in Alzheimer's disease.
Upon treatment with amyloid‐β (Aβ), the Ca2+‐binding protein regucalcin (RGN) inhibits overproduction of mitochondrial reactive oxygen species and the subsequent oxidative damage, restores mitochondrial function, and blocks apoptosis in neuronally differentiated PC12 cells. RGN also inhibits Aβ‐induced nuclear factor‐κB activation and attenuates nitric oxide (NO)‐induced nitrosative damage from inducible NO synthase. Thus, RGN exerts protective effect against Aβ toxicity.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>29511612</pmid><doi>10.1002/2211-5463.12374</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-5463 |
ispartof | FEBS open bio, 2018-03, Vol.8 (3), p.349-360 |
issn | 2211-5463 2211-5463 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c7fd1b22d7ad414788b821f7e5d006fb |
source | Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central |
subjects | Alzheimer's disease amyloid‐β Apoptosis Breast cancer Calcium (intracellular) Calcium homeostasis Calcium signalling Calcium-binding protein Caspase Cell activation Cell differentiation CRISPR Cytotoxicity Endoplasmic reticulum Gene expression Growth factors Homeostasis Intracellular signalling Kinases Lipid peroxidation mitochondrial dysfunction Neurodegeneration Neurodegenerative diseases Neurotoxicity Nitric oxide Nitric-oxide synthase Oxidative stress Pancreatic cancer Pathogenesis Penicillin Pheochromocytoma cells Phosphatase Proteins reactive nitrogen species Reactive oxygen species Reagents regucalcin Senile plaques β-Amyloid |
title | Regucalcin confers resistance to amyloid‐β toxicity in neuronally differentiated PC12 cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regucalcin%20confers%20resistance%20to%20amyloid%E2%80%90%CE%B2%20toxicity%20in%20neuronally%20differentiated%20PC12%20cells&rft.jtitle=FEBS%20open%20bio&rft.au=Murata,%20Tomiyasu&rft.date=2018-03&rft.volume=8&rft.issue=3&rft.spage=349&rft.epage=360&rft.pages=349-360&rft.issn=2211-5463&rft.eissn=2211-5463&rft_id=info:doi/10.1002/2211-5463.12374&rft_dat=%3Cproquest_doaj_%3E1010022211546312374%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d4434-4c8b9e8f81399b292d80c74cf85dfa197e8c25d93d65513b1d362fee4d46ecd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149123515&rft_id=info:pmid/29511612&rfr_iscdi=true |