Loading…

Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians

In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2023-03, Vol.2023, p.1-5
Main Authors: Li, Dehe, Li, Bo, Zhang, Lifen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963
container_end_page 5
container_issue
container_start_page 1
container_title Advances in mathematical physics
container_volume 2023
creator Li, Dehe
Li, Bo
Zhang, Lifen
description In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented.
doi_str_mv 10.1155/2023/2347915
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c80faf48df74421e97493775488bdf4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c80faf48df74421e97493775488bdf4b</doaj_id><sourcerecordid>2788240456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963</originalsourceid><addsrcrecordid>eNp9kcFOwzAMhisEEmhw4wEicYSyJE2a5IgmGJMQINg9ctOEZeqakXQq4-npGNoRX2zZn39b-rPskuBbQjgfU0yLMS2YUIQfZWeklCJXpFDHh5ri0-wipSUeolC8VPwsa97DyqJn26PJAiKYzkb_DZ0PbULBoTcLDXrcrm1Mm-jA2IR63y3QLA1rXfRmIGyFHprQI9-iSVitG_uF5n3IXxtoLZpGSGkFbeuhTefZiYMm2Yu_PMrmD_fzyWP-9DKdTe6ecsOo6HLAltmyUErWypCaM2yMxIZJVzKJayNLjAWvqCuUGSBaG8fZbqZEZVRZjLLZXrYOsNTr6FcQtzqA17-NED80xM6bxupB14FjsnaCMUqsEkwVQnAmZVU7Vg1aV3utdQyfG5s6vQyb2A7fayqkpAwzvrt4s6dMDClF6w5XCdY7d_TOHf3nzoBf7_GFb2vo_f_0D2FnjeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788240456</pqid></control><display><type>article</type><title>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</title><source>Wiley-Blackwell Open Access Collection</source><source>ProQuest Publicly Available Content database</source><creator>Li, Dehe ; Li, Bo ; Zhang, Lifen</creator><contributor>De Leon, Manuel ; Manuel De Leon</contributor><creatorcontrib>Li, Dehe ; Li, Bo ; Zhang, Lifen ; De Leon, Manuel ; Manuel De Leon</creatorcontrib><description>In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2023/2347915</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Fields (mathematics) ; Hyperspaces ; Inequality</subject><ispartof>Advances in mathematical physics, 2023-03, Vol.2023, p.1-5</ispartof><rights>Copyright © 2023 Dehe Li et al.</rights><rights>Copyright © 2023 Dehe Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963</cites><orcidid>0000-0002-6909-1372 ; 0000-0001-8138-7312 ; 0000-0003-3758-8859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2788240456/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2788240456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>De Leon, Manuel</contributor><contributor>Manuel De Leon</contributor><creatorcontrib>Li, Dehe</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Lifen</creatorcontrib><title>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</title><title>Advances in mathematical physics</title><description>In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented.</description><subject>Fields (mathematics)</subject><subject>Hyperspaces</subject><subject>Inequality</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFOwzAMhisEEmhw4wEicYSyJE2a5IgmGJMQINg9ctOEZeqakXQq4-npGNoRX2zZn39b-rPskuBbQjgfU0yLMS2YUIQfZWeklCJXpFDHh5ri0-wipSUeolC8VPwsa97DyqJn26PJAiKYzkb_DZ0PbULBoTcLDXrcrm1Mm-jA2IR63y3QLA1rXfRmIGyFHprQI9-iSVitG_uF5n3IXxtoLZpGSGkFbeuhTefZiYMm2Yu_PMrmD_fzyWP-9DKdTe6ecsOo6HLAltmyUErWypCaM2yMxIZJVzKJayNLjAWvqCuUGSBaG8fZbqZEZVRZjLLZXrYOsNTr6FcQtzqA17-NED80xM6bxupB14FjsnaCMUqsEkwVQnAmZVU7Vg1aV3utdQyfG5s6vQyb2A7fayqkpAwzvrt4s6dMDClF6w5XCdY7d_TOHf3nzoBf7_GFb2vo_f_0D2FnjeA</recordid><startdate>20230310</startdate><enddate>20230310</enddate><creator>Li, Dehe</creator><creator>Li, Bo</creator><creator>Zhang, Lifen</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6909-1372</orcidid><orcidid>https://orcid.org/0000-0001-8138-7312</orcidid><orcidid>https://orcid.org/0000-0003-3758-8859</orcidid></search><sort><creationdate>20230310</creationdate><title>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</title><author>Li, Dehe ; Li, Bo ; Zhang, Lifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fields (mathematics)</topic><topic>Hyperspaces</topic><topic>Inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dehe</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Lifen</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dehe</au><au>Li, Bo</au><au>Zhang, Lifen</au><au>De Leon, Manuel</au><au>Manuel De Leon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</atitle><jtitle>Advances in mathematical physics</jtitle><date>2023-03-10</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/2347915</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6909-1372</orcidid><orcidid>https://orcid.org/0000-0001-8138-7312</orcidid><orcidid>https://orcid.org/0000-0003-3758-8859</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9120
ispartof Advances in mathematical physics, 2023-03, Vol.2023, p.1-5
issn 1687-9120
1687-9139
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c80faf48df74421e97493775488bdf4b
source Wiley-Blackwell Open Access Collection; ProQuest Publicly Available Content database
subjects Fields (mathematics)
Hyperspaces
Inequality
title Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20New%20Characterizations%20of%20Real%20Hypersurfaces%20with%20Isometric%20Reeb%20Flow%20in%20Complex%20Two-Plane%20Grassmannians&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Li,%20Dehe&rft.date=2023-03-10&rft.volume=2023&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2023/2347915&rft_dat=%3Cproquest_doaj_%3E2788240456%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788240456&rft_id=info:pmid/&rfr_iscdi=true