Loading…
Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians
In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the...
Saved in:
Published in: | Advances in mathematical physics 2023-03, Vol.2023, p.1-5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963 |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2023 |
creator | Li, Dehe Li, Bo Zhang, Lifen |
description | In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented. |
doi_str_mv | 10.1155/2023/2347915 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c80faf48df74421e97493775488bdf4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c80faf48df74421e97493775488bdf4b</doaj_id><sourcerecordid>2788240456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963</originalsourceid><addsrcrecordid>eNp9kcFOwzAMhisEEmhw4wEicYSyJE2a5IgmGJMQINg9ctOEZeqakXQq4-npGNoRX2zZn39b-rPskuBbQjgfU0yLMS2YUIQfZWeklCJXpFDHh5ri0-wipSUeolC8VPwsa97DyqJn26PJAiKYzkb_DZ0PbULBoTcLDXrcrm1Mm-jA2IR63y3QLA1rXfRmIGyFHprQI9-iSVitG_uF5n3IXxtoLZpGSGkFbeuhTefZiYMm2Yu_PMrmD_fzyWP-9DKdTe6ecsOo6HLAltmyUErWypCaM2yMxIZJVzKJayNLjAWvqCuUGSBaG8fZbqZEZVRZjLLZXrYOsNTr6FcQtzqA17-NED80xM6bxupB14FjsnaCMUqsEkwVQnAmZVU7Vg1aV3utdQyfG5s6vQyb2A7fayqkpAwzvrt4s6dMDClF6w5XCdY7d_TOHf3nzoBf7_GFb2vo_f_0D2FnjeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788240456</pqid></control><display><type>article</type><title>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</title><source>Wiley-Blackwell Open Access Collection</source><source>ProQuest Publicly Available Content database</source><creator>Li, Dehe ; Li, Bo ; Zhang, Lifen</creator><contributor>De Leon, Manuel ; Manuel De Leon</contributor><creatorcontrib>Li, Dehe ; Li, Bo ; Zhang, Lifen ; De Leon, Manuel ; Manuel De Leon</creatorcontrib><description>In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2023/2347915</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Fields (mathematics) ; Hyperspaces ; Inequality</subject><ispartof>Advances in mathematical physics, 2023-03, Vol.2023, p.1-5</ispartof><rights>Copyright © 2023 Dehe Li et al.</rights><rights>Copyright © 2023 Dehe Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963</cites><orcidid>0000-0002-6909-1372 ; 0000-0001-8138-7312 ; 0000-0003-3758-8859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2788240456/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2788240456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>De Leon, Manuel</contributor><contributor>Manuel De Leon</contributor><creatorcontrib>Li, Dehe</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Lifen</creatorcontrib><title>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</title><title>Advances in mathematical physics</title><description>In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented.</description><subject>Fields (mathematics)</subject><subject>Hyperspaces</subject><subject>Inequality</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFOwzAMhisEEmhw4wEicYSyJE2a5IgmGJMQINg9ctOEZeqakXQq4-npGNoRX2zZn39b-rPskuBbQjgfU0yLMS2YUIQfZWeklCJXpFDHh5ri0-wipSUeolC8VPwsa97DyqJn26PJAiKYzkb_DZ0PbULBoTcLDXrcrm1Mm-jA2IR63y3QLA1rXfRmIGyFHprQI9-iSVitG_uF5n3IXxtoLZpGSGkFbeuhTefZiYMm2Yu_PMrmD_fzyWP-9DKdTe6ecsOo6HLAltmyUErWypCaM2yMxIZJVzKJayNLjAWvqCuUGSBaG8fZbqZEZVRZjLLZXrYOsNTr6FcQtzqA17-NED80xM6bxupB14FjsnaCMUqsEkwVQnAmZVU7Vg1aV3utdQyfG5s6vQyb2A7fayqkpAwzvrt4s6dMDClF6w5XCdY7d_TOHf3nzoBf7_GFb2vo_f_0D2FnjeA</recordid><startdate>20230310</startdate><enddate>20230310</enddate><creator>Li, Dehe</creator><creator>Li, Bo</creator><creator>Zhang, Lifen</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6909-1372</orcidid><orcidid>https://orcid.org/0000-0001-8138-7312</orcidid><orcidid>https://orcid.org/0000-0003-3758-8859</orcidid></search><sort><creationdate>20230310</creationdate><title>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</title><author>Li, Dehe ; Li, Bo ; Zhang, Lifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fields (mathematics)</topic><topic>Hyperspaces</topic><topic>Inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dehe</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Lifen</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dehe</au><au>Li, Bo</au><au>Zhang, Lifen</au><au>De Leon, Manuel</au><au>Manuel De Leon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians</atitle><jtitle>Advances in mathematical physics</jtitle><date>2023-03-10</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>In this note, we establish an integral inequality for compact and orientable real hypersurfaces in complex two-plane Grassmannians G2ℂm+2, involving the shape operator A and the Reeb vector field ξ. Moreover, this integral inequality is optimal in the sense that the real hypersurfaces attaining the equality are completely determined. As direct consequences, some new characterizations of the real hypersurfaces in G2ℂm+2 with isometric Reeb flow can be presented.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/2347915</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6909-1372</orcidid><orcidid>https://orcid.org/0000-0001-8138-7312</orcidid><orcidid>https://orcid.org/0000-0003-3758-8859</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2023-03, Vol.2023, p.1-5 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c80faf48df74421e97493775488bdf4b |
source | Wiley-Blackwell Open Access Collection; ProQuest Publicly Available Content database |
subjects | Fields (mathematics) Hyperspaces Inequality |
title | Some New Characterizations of Real Hypersurfaces with Isometric Reeb Flow in Complex Two-Plane Grassmannians |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20New%20Characterizations%20of%20Real%20Hypersurfaces%20with%20Isometric%20Reeb%20Flow%20in%20Complex%20Two-Plane%20Grassmannians&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Li,%20Dehe&rft.date=2023-03-10&rft.volume=2023&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2023/2347915&rft_dat=%3Cproquest_doaj_%3E2788240456%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-a0e4e63998d9c1d540cc80c48f6480dc860075b2f39c9982dcf54f64897bc963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788240456&rft_id=info:pmid/&rfr_iscdi=true |