Loading…
An Intrusion Detection System for 5G SDN Network Utilizing Binarized Deep Spiking Capsule Fire Hawk Neural Networks and Blockchain Technology
The advent of 5G heralds unprecedented connectivity with high throughput and low latency for network users. Software-defined networking (SDN) plays a significant role in fulfilling these requirements. However, it poses substantial security challenges due to its inherent centralized management strate...
Saved in:
Published in: | Future internet 2024-10, Vol.16 (10), p.359 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c250t-338555896ced2b0cd384d7989621523ad3e9b8a9c3e879dfbb28dea27bf98973 |
container_end_page | |
container_issue | 10 |
container_start_page | 359 |
container_title | Future internet |
container_volume | 16 |
creator | Nayak, Nanavath Kiran Singh Bhattacharyya, Budhaditya |
description | The advent of 5G heralds unprecedented connectivity with high throughput and low latency for network users. Software-defined networking (SDN) plays a significant role in fulfilling these requirements. However, it poses substantial security challenges due to its inherent centralized management strategy. Moreover, SDN confronts limitations in handling malicious traffic under 5G’s extensive data flow. To deal with these issues, this paper presents a novel intrusion detection system (IDS) designed for 5G SDN networks, leveraging the advanced capabilities of binarized deep spiking capsule fire hawk neural networks (BSHNN) and blockchain technology, which operates across multiple layers. Initially, the lightweight encryption algorithm (LEA) is used at the data acquisition layer to authenticate mobile users via trusted third parties. Followed by optimal switch selection using the mud-ring algorithm in the switch layer, and the data flow rules are secured by employing blockchain technology incorporating searchable encryption algorithms within the blockchain plane. The domain controller layer utilizes binarized deep spiking capsule fire hawk neural network (BSHNN) for real-time data packet classification, while the smart controller layer uses enhanced adapting hidden attribute-weighted naive bayes (EAWNB) to identify suspicious packets during data transmission. The experimental results show that the proposed technique outperforms the state-of-the-art approaches in terms of accuracy (98.02%), precision (96.40%), detection rate (96.41%), authentication time (16.2 s), throughput, delay, and packet loss ratio. |
doi_str_mv | 10.3390/fi16100359 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c82599dfa96c472b9704c5d91f42e56d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c82599dfa96c472b9704c5d91f42e56d</doaj_id><sourcerecordid>3120634035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-338555896ced2b0cd384d7989621523ad3e9b8a9c3e879dfbb28dea27bf98973</originalsourceid><addsrcrecordid>eNpNkU1OwzAQhSMEEgjYcAJL7JAKjh0n8RIKhUoIFi1ry7EnxW2wg-0IlTtwZ1zK32xm9PTmm5Felp3k-JxSji9ak5c5xpTxnewg55yPGMd099-8nx2HsMSpKCdlWR1kH5cWTW30QzDOomuIoOJmmq1DhBfUOo_YLZpdP6AHiG_Or9BTNJ15N3aBroyV3ryDTnvQo1lvVht5LPswdIAmxgO6k2-rtDp42f0QApJWo6vOqZV6lsaiOahn6zq3WB9le63sAhx_98NsPrmZj-9G94-30_Hl_UgRhuOI0poxVvNSgSYNVprWha54EkjOCJWaAm9qyRWFuuK6bRpSa5CkatpkquhhNt1itZNL0XvzIv1aOGnEl-D8QkgfjepAqJownhAyHSsq0vAKF4ppnrcFAVbqxDrdsnrvXgcIUSzd4G36XtCc4JIWKZDkOtu6lHcheGh_r-ZYbMITf-HRT-FbjCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120634035</pqid></control><display><type>article</type><title>An Intrusion Detection System for 5G SDN Network Utilizing Binarized Deep Spiking Capsule Fire Hawk Neural Networks and Blockchain Technology</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM global</source><creator>Nayak, Nanavath Kiran Singh ; Bhattacharyya, Budhaditya</creator><creatorcontrib>Nayak, Nanavath Kiran Singh ; Bhattacharyya, Budhaditya</creatorcontrib><description>The advent of 5G heralds unprecedented connectivity with high throughput and low latency for network users. Software-defined networking (SDN) plays a significant role in fulfilling these requirements. However, it poses substantial security challenges due to its inherent centralized management strategy. Moreover, SDN confronts limitations in handling malicious traffic under 5G’s extensive data flow. To deal with these issues, this paper presents a novel intrusion detection system (IDS) designed for 5G SDN networks, leveraging the advanced capabilities of binarized deep spiking capsule fire hawk neural networks (BSHNN) and blockchain technology, which operates across multiple layers. Initially, the lightweight encryption algorithm (LEA) is used at the data acquisition layer to authenticate mobile users via trusted third parties. Followed by optimal switch selection using the mud-ring algorithm in the switch layer, and the data flow rules are secured by employing blockchain technology incorporating searchable encryption algorithms within the blockchain plane. The domain controller layer utilizes binarized deep spiking capsule fire hawk neural network (BSHNN) for real-time data packet classification, while the smart controller layer uses enhanced adapting hidden attribute-weighted naive bayes (EAWNB) to identify suspicious packets during data transmission. The experimental results show that the proposed technique outperforms the state-of-the-art approaches in terms of accuracy (98.02%), precision (96.40%), detection rate (96.41%), authentication time (16.2 s), throughput, delay, and packet loss ratio.</description><identifier>ISSN: 1999-5903</identifier><identifier>EISSN: 1999-5903</identifier><identifier>DOI: 10.3390/fi16100359</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>5G SDN ; Accuracy ; Algorithms ; Artificial intelligence ; binarized deep spiking capsule fire hawk neural network ; Blockchain ; Controllers ; Cybersecurity ; Data acquisition ; Data encryption ; Data integrity ; Data transmission ; Denial of service attacks ; Encryption ; Energy efficiency ; Innovations ; Internet of Things ; intrusion detection system ; Intrusion detection systems ; Machine learning ; Network latency ; Neural networks ; Packet transmission ; Real time ; Security systems ; Software-defined networking ; Spiking ; Trusted third parties</subject><ispartof>Future internet, 2024-10, Vol.16 (10), p.359</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-338555896ced2b0cd384d7989621523ad3e9b8a9c3e879dfbb28dea27bf98973</cites><orcidid>0000-0001-6507-763X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120634035/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120634035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11669,25733,27903,27904,36039,36991,44342,44569,74641,74872</link.rule.ids></links><search><creatorcontrib>Nayak, Nanavath Kiran Singh</creatorcontrib><creatorcontrib>Bhattacharyya, Budhaditya</creatorcontrib><title>An Intrusion Detection System for 5G SDN Network Utilizing Binarized Deep Spiking Capsule Fire Hawk Neural Networks and Blockchain Technology</title><title>Future internet</title><description>The advent of 5G heralds unprecedented connectivity with high throughput and low latency for network users. Software-defined networking (SDN) plays a significant role in fulfilling these requirements. However, it poses substantial security challenges due to its inherent centralized management strategy. Moreover, SDN confronts limitations in handling malicious traffic under 5G’s extensive data flow. To deal with these issues, this paper presents a novel intrusion detection system (IDS) designed for 5G SDN networks, leveraging the advanced capabilities of binarized deep spiking capsule fire hawk neural networks (BSHNN) and blockchain technology, which operates across multiple layers. Initially, the lightweight encryption algorithm (LEA) is used at the data acquisition layer to authenticate mobile users via trusted third parties. Followed by optimal switch selection using the mud-ring algorithm in the switch layer, and the data flow rules are secured by employing blockchain technology incorporating searchable encryption algorithms within the blockchain plane. The domain controller layer utilizes binarized deep spiking capsule fire hawk neural network (BSHNN) for real-time data packet classification, while the smart controller layer uses enhanced adapting hidden attribute-weighted naive bayes (EAWNB) to identify suspicious packets during data transmission. The experimental results show that the proposed technique outperforms the state-of-the-art approaches in terms of accuracy (98.02%), precision (96.40%), detection rate (96.41%), authentication time (16.2 s), throughput, delay, and packet loss ratio.</description><subject>5G SDN</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>binarized deep spiking capsule fire hawk neural network</subject><subject>Blockchain</subject><subject>Controllers</subject><subject>Cybersecurity</subject><subject>Data acquisition</subject><subject>Data encryption</subject><subject>Data integrity</subject><subject>Data transmission</subject><subject>Denial of service attacks</subject><subject>Encryption</subject><subject>Energy efficiency</subject><subject>Innovations</subject><subject>Internet of Things</subject><subject>intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Packet transmission</subject><subject>Real time</subject><subject>Security systems</subject><subject>Software-defined networking</subject><subject>Spiking</subject><subject>Trusted third parties</subject><issn>1999-5903</issn><issn>1999-5903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1OwzAQhSMEEgjYcAJL7JAKjh0n8RIKhUoIFi1ry7EnxW2wg-0IlTtwZ1zK32xm9PTmm5Felp3k-JxSji9ak5c5xpTxnewg55yPGMd099-8nx2HsMSpKCdlWR1kH5cWTW30QzDOomuIoOJmmq1DhBfUOo_YLZpdP6AHiG_Or9BTNJ15N3aBroyV3ryDTnvQo1lvVht5LPswdIAmxgO6k2-rtDp42f0QApJWo6vOqZV6lsaiOahn6zq3WB9le63sAhx_98NsPrmZj-9G94-30_Hl_UgRhuOI0poxVvNSgSYNVprWha54EkjOCJWaAm9qyRWFuuK6bRpSa5CkatpkquhhNt1itZNL0XvzIv1aOGnEl-D8QkgfjepAqJownhAyHSsq0vAKF4ppnrcFAVbqxDrdsnrvXgcIUSzd4G36XtCc4JIWKZDkOtu6lHcheGh_r-ZYbMITf-HRT-FbjCg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Nayak, Nanavath Kiran Singh</creator><creator>Bhattacharyya, Budhaditya</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6507-763X</orcidid></search><sort><creationdate>20241001</creationdate><title>An Intrusion Detection System for 5G SDN Network Utilizing Binarized Deep Spiking Capsule Fire Hawk Neural Networks and Blockchain Technology</title><author>Nayak, Nanavath Kiran Singh ; Bhattacharyya, Budhaditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-338555896ced2b0cd384d7989621523ad3e9b8a9c3e879dfbb28dea27bf98973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G SDN</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>binarized deep spiking capsule fire hawk neural network</topic><topic>Blockchain</topic><topic>Controllers</topic><topic>Cybersecurity</topic><topic>Data acquisition</topic><topic>Data encryption</topic><topic>Data integrity</topic><topic>Data transmission</topic><topic>Denial of service attacks</topic><topic>Encryption</topic><topic>Energy efficiency</topic><topic>Innovations</topic><topic>Internet of Things</topic><topic>intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Packet transmission</topic><topic>Real time</topic><topic>Security systems</topic><topic>Software-defined networking</topic><topic>Spiking</topic><topic>Trusted third parties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Nanavath Kiran Singh</creatorcontrib><creatorcontrib>Bhattacharyya, Budhaditya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Future internet</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Nanavath Kiran Singh</au><au>Bhattacharyya, Budhaditya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intrusion Detection System for 5G SDN Network Utilizing Binarized Deep Spiking Capsule Fire Hawk Neural Networks and Blockchain Technology</atitle><jtitle>Future internet</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>10</issue><spage>359</spage><pages>359-</pages><issn>1999-5903</issn><eissn>1999-5903</eissn><abstract>The advent of 5G heralds unprecedented connectivity with high throughput and low latency for network users. Software-defined networking (SDN) plays a significant role in fulfilling these requirements. However, it poses substantial security challenges due to its inherent centralized management strategy. Moreover, SDN confronts limitations in handling malicious traffic under 5G’s extensive data flow. To deal with these issues, this paper presents a novel intrusion detection system (IDS) designed for 5G SDN networks, leveraging the advanced capabilities of binarized deep spiking capsule fire hawk neural networks (BSHNN) and blockchain technology, which operates across multiple layers. Initially, the lightweight encryption algorithm (LEA) is used at the data acquisition layer to authenticate mobile users via trusted third parties. Followed by optimal switch selection using the mud-ring algorithm in the switch layer, and the data flow rules are secured by employing blockchain technology incorporating searchable encryption algorithms within the blockchain plane. The domain controller layer utilizes binarized deep spiking capsule fire hawk neural network (BSHNN) for real-time data packet classification, while the smart controller layer uses enhanced adapting hidden attribute-weighted naive bayes (EAWNB) to identify suspicious packets during data transmission. The experimental results show that the proposed technique outperforms the state-of-the-art approaches in terms of accuracy (98.02%), precision (96.40%), detection rate (96.41%), authentication time (16.2 s), throughput, delay, and packet loss ratio.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fi16100359</doi><orcidid>https://orcid.org/0000-0001-6507-763X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-5903 |
ispartof | Future internet, 2024-10, Vol.16 (10), p.359 |
issn | 1999-5903 1999-5903 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c82599dfa96c472b9704c5d91f42e56d |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM global |
subjects | 5G SDN Accuracy Algorithms Artificial intelligence binarized deep spiking capsule fire hawk neural network Blockchain Controllers Cybersecurity Data acquisition Data encryption Data integrity Data transmission Denial of service attacks Encryption Energy efficiency Innovations Internet of Things intrusion detection system Intrusion detection systems Machine learning Network latency Neural networks Packet transmission Real time Security systems Software-defined networking Spiking Trusted third parties |
title | An Intrusion Detection System for 5G SDN Network Utilizing Binarized Deep Spiking Capsule Fire Hawk Neural Networks and Blockchain Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intrusion%20Detection%20System%20for%205G%20SDN%20Network%20Utilizing%20Binarized%20Deep%20Spiking%20Capsule%20Fire%20Hawk%20Neural%20Networks%20and%20Blockchain%20Technology&rft.jtitle=Future%20internet&rft.au=Nayak,%20Nanavath%20Kiran%20Singh&rft.date=2024-10-01&rft.volume=16&rft.issue=10&rft.spage=359&rft.pages=359-&rft.issn=1999-5903&rft.eissn=1999-5903&rft_id=info:doi/10.3390/fi16100359&rft_dat=%3Cproquest_doaj_%3E3120634035%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-338555896ced2b0cd384d7989621523ad3e9b8a9c3e879dfbb28dea27bf98973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120634035&rft_id=info:pmid/&rfr_iscdi=true |