Loading…
From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality
Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observatio...
Saved in:
Published in: | Frontiers in microbiology 2017-11, Vol.8, p.2299-2299 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c555t-ac89d19418ec367cfb97d7e587b0dd5a189af099abe6b4da3624acf5e09d7a393 |
---|---|
cites | cdi_FETCH-LOGICAL-c555t-ac89d19418ec367cfb97d7e587b0dd5a189af099abe6b4da3624acf5e09d7a393 |
container_end_page | 2299 |
container_issue | |
container_start_page | 2299 |
container_title | Frontiers in microbiology |
container_volume | 8 |
creator | Kreft, Jan-Ulrich Plugge, Caroline M Prats, Clara Leveau, Johan H J Zhang, Weiwen Hellweger, Ferdi L |
description | Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy. |
doi_str_mv | 10.3389/fmicb.2017.02299 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c85f8318f8af45a8ae96935ae0210926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c85f8318f8af45a8ae96935ae0210926</doaj_id><sourcerecordid>1975998152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-ac89d19418ec367cfb97d7e587b0dd5a189af099abe6b4da3624acf5e09d7a393</originalsourceid><addsrcrecordid>eNpVkk1r3DAQhk1paUKae0_Fx152qw_LlnIohJCkCwm9tNCbGEvjXQVb2kp2wv77yrvbJRFIM_p4nxnBWxSfKVlyLtW3bnCmXTJCmyVhTKl3xTmt62rBCfvz_lV-Vlym9ETyqAjL68fijCnG5_y8gLsYhvIePaZyDOWtCWmXRhxS6Xz56EwMrQt9WO-uysdgsXd-XV5vtzGA2WQJeFuOGyxXwzbEEbzBMnTlylv37OwEvRt3n4oPHfQJL4_xovh9d_vr5sfi4ef96ub6YWGEEOMCjFSWqopKNLxuTNeqxjYoZNMSawVQqaAjSkGLdVtZ4DWrwHQCibINcMUvitWBawM86W10A8SdDuD0_iDEtYY4OtOjNlJ0klPZSegqARJQ1YoLQMIoUazOrKsD6wXW6POf0WsP0bi0B_aujTP8ZYra93PYTm3SgpOq4ln8_SDOhwNag36M0L_p6O2Ndxu9Ds9aNJRKLjKAHgAmTUZHNBgNjHvhaTNPRhqmc01Vz0W_HovG8HfCNOrBJYN9Dx7DlDRVjVBKUsHyU3LEx5BSxO7UGiV6dpbeO0vPztJ7Z2XJl9dfOgn--4j_AzcZzaI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975998152</pqid></control><display><type>article</type><title>From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality</title><source>PubMed Central</source><creator>Kreft, Jan-Ulrich ; Plugge, Caroline M ; Prats, Clara ; Leveau, Johan H J ; Zhang, Weiwen ; Hellweger, Ferdi L</creator><creatorcontrib>Kreft, Jan-Ulrich ; Plugge, Caroline M ; Prats, Clara ; Leveau, Johan H J ; Zhang, Weiwen ; Hellweger, Ferdi L</creatorcontrib><description>Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2017.02299</identifier><identifier>PMID: 29230200</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Agent-based modeling ; Ciències de la terra i de la vida ; Enginyeria agroalimentària ; Gene-centric modeling ; Genètica microbiana ; Heterogeneity ; Individuality ; Metabolic flux modeling ; Microbial ecology ; Microbial genetics ; Microbiologia ; Microbiology ; Single cell ; Àrees temàtiques de la UPC</subject><ispartof>Frontiers in microbiology, 2017-11, Vol.8, p.2299-2299</ispartof><rights>Attribution-NonCommercial 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc/3.0/es/">http://creativecommons.org/licenses/by-nc/3.0/es/</a></rights><rights>Copyright © 2017 Kreft, Plugge, Prats, Leveau, Zhang and Hellweger. 2017 Kreft, Plugge, Prats, Leveau, Zhang and Hellweger</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-ac89d19418ec367cfb97d7e587b0dd5a189af099abe6b4da3624acf5e09d7a393</citedby><cites>FETCH-LOGICAL-c555t-ac89d19418ec367cfb97d7e587b0dd5a189af099abe6b4da3624acf5e09d7a393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29230200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreft, Jan-Ulrich</creatorcontrib><creatorcontrib>Plugge, Caroline M</creatorcontrib><creatorcontrib>Prats, Clara</creatorcontrib><creatorcontrib>Leveau, Johan H J</creatorcontrib><creatorcontrib>Zhang, Weiwen</creatorcontrib><creatorcontrib>Hellweger, Ferdi L</creatorcontrib><title>From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality</title><title>Frontiers in microbiology</title><addtitle>Front Microbiol</addtitle><description>Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy.</description><subject>Agent-based modeling</subject><subject>Ciències de la terra i de la vida</subject><subject>Enginyeria agroalimentària</subject><subject>Gene-centric modeling</subject><subject>Genètica microbiana</subject><subject>Heterogeneity</subject><subject>Individuality</subject><subject>Metabolic flux modeling</subject><subject>Microbial ecology</subject><subject>Microbial genetics</subject><subject>Microbiologia</subject><subject>Microbiology</subject><subject>Single cell</subject><subject>Àrees temàtiques de la UPC</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkk1r3DAQhk1paUKae0_Fx152qw_LlnIohJCkCwm9tNCbGEvjXQVb2kp2wv77yrvbJRFIM_p4nxnBWxSfKVlyLtW3bnCmXTJCmyVhTKl3xTmt62rBCfvz_lV-Vlym9ETyqAjL68fijCnG5_y8gLsYhvIePaZyDOWtCWmXRhxS6Xz56EwMrQt9WO-uysdgsXd-XV5vtzGA2WQJeFuOGyxXwzbEEbzBMnTlylv37OwEvRt3n4oPHfQJL4_xovh9d_vr5sfi4ef96ub6YWGEEOMCjFSWqopKNLxuTNeqxjYoZNMSawVQqaAjSkGLdVtZ4DWrwHQCibINcMUvitWBawM86W10A8SdDuD0_iDEtYY4OtOjNlJ0klPZSegqARJQ1YoLQMIoUazOrKsD6wXW6POf0WsP0bi0B_aujTP8ZYra93PYTm3SgpOq4ln8_SDOhwNag36M0L_p6O2Ndxu9Ds9aNJRKLjKAHgAmTUZHNBgNjHvhaTNPRhqmc01Vz0W_HovG8HfCNOrBJYN9Dx7DlDRVjVBKUsHyU3LEx5BSxO7UGiV6dpbeO0vPztJ7Z2XJl9dfOgn--4j_AzcZzaI</recordid><startdate>20171127</startdate><enddate>20171127</enddate><creator>Kreft, Jan-Ulrich</creator><creator>Plugge, Caroline M</creator><creator>Prats, Clara</creator><creator>Leveau, Johan H J</creator><creator>Zhang, Weiwen</creator><creator>Hellweger, Ferdi L</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20171127</creationdate><title>From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality</title><author>Kreft, Jan-Ulrich ; Plugge, Caroline M ; Prats, Clara ; Leveau, Johan H J ; Zhang, Weiwen ; Hellweger, Ferdi L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-ac89d19418ec367cfb97d7e587b0dd5a189af099abe6b4da3624acf5e09d7a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agent-based modeling</topic><topic>Ciències de la terra i de la vida</topic><topic>Enginyeria agroalimentària</topic><topic>Gene-centric modeling</topic><topic>Genètica microbiana</topic><topic>Heterogeneity</topic><topic>Individuality</topic><topic>Metabolic flux modeling</topic><topic>Microbial ecology</topic><topic>Microbial genetics</topic><topic>Microbiologia</topic><topic>Microbiology</topic><topic>Single cell</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreft, Jan-Ulrich</creatorcontrib><creatorcontrib>Plugge, Caroline M</creatorcontrib><creatorcontrib>Prats, Clara</creatorcontrib><creatorcontrib>Leveau, Johan H J</creatorcontrib><creatorcontrib>Zhang, Weiwen</creatorcontrib><creatorcontrib>Hellweger, Ferdi L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreft, Jan-Ulrich</au><au>Plugge, Caroline M</au><au>Prats, Clara</au><au>Leveau, Johan H J</au><au>Zhang, Weiwen</au><au>Hellweger, Ferdi L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality</atitle><jtitle>Frontiers in microbiology</jtitle><addtitle>Front Microbiol</addtitle><date>2017-11-27</date><risdate>2017</risdate><volume>8</volume><spage>2299</spage><epage>2299</epage><pages>2299-2299</pages><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>29230200</pmid><doi>10.3389/fmicb.2017.02299</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-302X |
ispartof | Frontiers in microbiology, 2017-11, Vol.8, p.2299-2299 |
issn | 1664-302X 1664-302X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c85f8318f8af45a8ae96935ae0210926 |
source | PubMed Central |
subjects | Agent-based modeling Ciències de la terra i de la vida Enginyeria agroalimentària Gene-centric modeling Genètica microbiana Heterogeneity Individuality Metabolic flux modeling Microbial ecology Microbial genetics Microbiologia Microbiology Single cell Àrees temàtiques de la UPC |
title | From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Genes%20to%20Ecosystems%20in%20Microbiology:%20Modeling%20Approaches%20and%20the%20Importance%20of%20Individuality&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Kreft,%20Jan-Ulrich&rft.date=2017-11-27&rft.volume=8&rft.spage=2299&rft.epage=2299&rft.pages=2299-2299&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2017.02299&rft_dat=%3Cproquest_doaj_%3E1975998152%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-ac89d19418ec367cfb97d7e587b0dd5a189af099abe6b4da3624acf5e09d7a393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975998152&rft_id=info:pmid/29230200&rfr_iscdi=true |