Loading…

Development and Characterization of Edible Films Based on Cassava Starch Modified by Corona Treatment

Corona treatment (CT), a surface treatment widely used in the plastic industry, can be used to alter the properties of cassava starch. In the present work, CT was performed on dry granular starch (DS), water-suspended humid granular starch (HS), and gelatinized starch (GS). Different properties and...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2024-02, Vol.13 (3), p.468
Main Authors: Otálora González, Carlos Mauricio, Felix, Manuel, Bengoechea, Carlos, Flores, Silvia, Gerschenson, Lía Noemí
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-d8986aab71f926b72b952c31702b721c6cd774c734ac1cbd32d0a0f2addcf38b3
cites cdi_FETCH-LOGICAL-c465t-d8986aab71f926b72b952c31702b721c6cd774c734ac1cbd32d0a0f2addcf38b3
container_end_page
container_issue 3
container_start_page 468
container_title Foods
container_volume 13
creator Otálora González, Carlos Mauricio
Felix, Manuel
Bengoechea, Carlos
Flores, Silvia
Gerschenson, Lía Noemí
description Corona treatment (CT), a surface treatment widely used in the plastic industry, can be used to alter the properties of cassava starch. In the present work, CT was performed on dry granular starch (DS), water-suspended humid granular starch (HS), and gelatinized starch (GS). Different properties and structural characteristics of treated starches were studied. A lowering in pH was generally observed after CT and the rheological properties depended on the starch presentation. A reinforcement of DS and HS samples after CT was deduced from higher viscosity values in flow assays and viscoelastic moduli, but weak gels were obtained when CT was applied to GS. Changes in the A-type polymorphic structure, as well as a drop in relative crystallinity, were produced by CT for DS and HS. Additionally, changes in O-H and C-O-C FTIR bands were observed. Therefore, CT can be applied for starch modification, producing predominantly cross-linking in the DS and de-polymerization in the HS. Casting films made from the modified DS showed higher tensile strength and lower hydrophilicity, solubility, water absorption capacity, and water vapor permeability. Thus, the DS cross-linking induced by CT improved mechanical characteristics and hydrophobicity in edible films, which can be better used as packaging materials.
doi_str_mv 10.3390/foods13030468
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c8644cae73544acc864846c7f1dcc6b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782090311</galeid><doaj_id>oai_doaj_org_article_c8644cae73544acc864846c7f1dcc6b7</doaj_id><sourcerecordid>A782090311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-d8986aab71f926b72b952c31702b721c6cd774c734ac1cbd32d0a0f2addcf38b3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhqMK1Falx14rS1y4pNieJHaOJbRQqYgD5RxNxnbrVRIvdrZS-fU4bKkA--D5ePyOx1MUZ4JfALT8vQvBJAEceNXog-JYZqPUotav_rKPitOUNjyvVoAGeVgc5QN0w-G4sB_tox3DdrLzwnA2rHvAiLTY6H_i4sPMgmNXxg-jZdd-nBL7gMkalhMdpoSPyL4tGOmBfQnGO59TwxPrQgwzsrtocVmV3xSvHY7Jnj6fJ8X366u77nN5-_XTTXd5W1LV1EtpdKsbxEEJ18pmUHJoa0kgFJfZEdSQUaoiBRWSoMGANBy5k2gMOdADnBQ3e10TcNNvo58wPvUBff87EOJ9j3HxNNqedFNVhFZBXWW51dVVQ8oJQ5RrZ613e61tDD92Ni395BPZccTZhl3qZStrDg2vRUbf_oduwi7OudOVgrYCpdpMXeype8z1_ezCkn86b2MnT2G2zuf4pdKStxzEKlvuL1AMKUXrXjoSvF_n3_8z_8yfPz9jN0zWvNB_pg2_ADw_qnU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923943779</pqid></control><display><type>article</type><title>Development and Characterization of Edible Films Based on Cassava Starch Modified by Corona Treatment</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Otálora González, Carlos Mauricio ; Felix, Manuel ; Bengoechea, Carlos ; Flores, Silvia ; Gerschenson, Lía Noemí</creator><creatorcontrib>Otálora González, Carlos Mauricio ; Felix, Manuel ; Bengoechea, Carlos ; Flores, Silvia ; Gerschenson, Lía Noemí</creatorcontrib><description>Corona treatment (CT), a surface treatment widely used in the plastic industry, can be used to alter the properties of cassava starch. In the present work, CT was performed on dry granular starch (DS), water-suspended humid granular starch (HS), and gelatinized starch (GS). Different properties and structural characteristics of treated starches were studied. A lowering in pH was generally observed after CT and the rheological properties depended on the starch presentation. A reinforcement of DS and HS samples after CT was deduced from higher viscosity values in flow assays and viscoelastic moduli, but weak gels were obtained when CT was applied to GS. Changes in the A-type polymorphic structure, as well as a drop in relative crystallinity, were produced by CT for DS and HS. Additionally, changes in O-H and C-O-C FTIR bands were observed. Therefore, CT can be applied for starch modification, producing predominantly cross-linking in the DS and de-polymerization in the HS. Casting films made from the modified DS showed higher tensile strength and lower hydrophilicity, solubility, water absorption capacity, and water vapor permeability. Thus, the DS cross-linking induced by CT improved mechanical characteristics and hydrophobicity in edible films, which can be better used as packaging materials.</description><identifier>ISSN: 2304-8158</identifier><identifier>EISSN: 2304-8158</identifier><identifier>DOI: 10.3390/foods13030468</identifier><identifier>PMID: 38338603</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Atmospheric pressure ; Biodegradable materials ; Cassava ; corona treatment ; Crosslinking ; edible films ; Electrodes ; Fourier transforms ; Gels ; Hydrophobicity ; Mechanical properties ; modification ; Packaging materials ; Permeability ; Plasma ; Plastics industry ; Polymerization ; Rheological properties ; Software ; Spectrum analysis ; Starch ; Starches ; Surface treatment ; Tensile strength ; Viscoelasticity ; Viscosity ; Water absorption ; Water vapor</subject><ispartof>Foods, 2024-02, Vol.13 (3), p.468</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-d8986aab71f926b72b952c31702b721c6cd774c734ac1cbd32d0a0f2addcf38b3</citedby><cites>FETCH-LOGICAL-c465t-d8986aab71f926b72b952c31702b721c6cd774c734ac1cbd32d0a0f2addcf38b3</cites><orcidid>0000-0002-3608-7035 ; 0000-0003-3223-5384 ; 0000-0002-4794-731X ; 0000-0002-6400-0435 ; 0000-0002-6663-9697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2923943779/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2923943779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38338603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Otálora González, Carlos Mauricio</creatorcontrib><creatorcontrib>Felix, Manuel</creatorcontrib><creatorcontrib>Bengoechea, Carlos</creatorcontrib><creatorcontrib>Flores, Silvia</creatorcontrib><creatorcontrib>Gerschenson, Lía Noemí</creatorcontrib><title>Development and Characterization of Edible Films Based on Cassava Starch Modified by Corona Treatment</title><title>Foods</title><addtitle>Foods</addtitle><description>Corona treatment (CT), a surface treatment widely used in the plastic industry, can be used to alter the properties of cassava starch. In the present work, CT was performed on dry granular starch (DS), water-suspended humid granular starch (HS), and gelatinized starch (GS). Different properties and structural characteristics of treated starches were studied. A lowering in pH was generally observed after CT and the rheological properties depended on the starch presentation. A reinforcement of DS and HS samples after CT was deduced from higher viscosity values in flow assays and viscoelastic moduli, but weak gels were obtained when CT was applied to GS. Changes in the A-type polymorphic structure, as well as a drop in relative crystallinity, were produced by CT for DS and HS. Additionally, changes in O-H and C-O-C FTIR bands were observed. Therefore, CT can be applied for starch modification, producing predominantly cross-linking in the DS and de-polymerization in the HS. Casting films made from the modified DS showed higher tensile strength and lower hydrophilicity, solubility, water absorption capacity, and water vapor permeability. Thus, the DS cross-linking induced by CT improved mechanical characteristics and hydrophobicity in edible films, which can be better used as packaging materials.</description><subject>Atmospheric pressure</subject><subject>Biodegradable materials</subject><subject>Cassava</subject><subject>corona treatment</subject><subject>Crosslinking</subject><subject>edible films</subject><subject>Electrodes</subject><subject>Fourier transforms</subject><subject>Gels</subject><subject>Hydrophobicity</subject><subject>Mechanical properties</subject><subject>modification</subject><subject>Packaging materials</subject><subject>Permeability</subject><subject>Plasma</subject><subject>Plastics industry</subject><subject>Polymerization</subject><subject>Rheological properties</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Starch</subject><subject>Starches</subject><subject>Surface treatment</subject><subject>Tensile strength</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Water absorption</subject><subject>Water vapor</subject><issn>2304-8158</issn><issn>2304-8158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhqMK1Falx14rS1y4pNieJHaOJbRQqYgD5RxNxnbrVRIvdrZS-fU4bKkA--D5ePyOx1MUZ4JfALT8vQvBJAEceNXog-JYZqPUotav_rKPitOUNjyvVoAGeVgc5QN0w-G4sB_tox3DdrLzwnA2rHvAiLTY6H_i4sPMgmNXxg-jZdd-nBL7gMkalhMdpoSPyL4tGOmBfQnGO59TwxPrQgwzsrtocVmV3xSvHY7Jnj6fJ8X366u77nN5-_XTTXd5W1LV1EtpdKsbxEEJ18pmUHJoa0kgFJfZEdSQUaoiBRWSoMGANBy5k2gMOdADnBQ3e10TcNNvo58wPvUBff87EOJ9j3HxNNqedFNVhFZBXWW51dVVQ8oJQ5RrZ613e61tDD92Ni395BPZccTZhl3qZStrDg2vRUbf_oduwi7OudOVgrYCpdpMXeype8z1_ezCkn86b2MnT2G2zuf4pdKStxzEKlvuL1AMKUXrXjoSvF_n3_8z_8yfPz9jN0zWvNB_pg2_ADw_qnU</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Otálora González, Carlos Mauricio</creator><creator>Felix, Manuel</creator><creator>Bengoechea, Carlos</creator><creator>Flores, Silvia</creator><creator>Gerschenson, Lía Noemí</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3608-7035</orcidid><orcidid>https://orcid.org/0000-0003-3223-5384</orcidid><orcidid>https://orcid.org/0000-0002-4794-731X</orcidid><orcidid>https://orcid.org/0000-0002-6400-0435</orcidid><orcidid>https://orcid.org/0000-0002-6663-9697</orcidid></search><sort><creationdate>20240201</creationdate><title>Development and Characterization of Edible Films Based on Cassava Starch Modified by Corona Treatment</title><author>Otálora González, Carlos Mauricio ; Felix, Manuel ; Bengoechea, Carlos ; Flores, Silvia ; Gerschenson, Lía Noemí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-d8986aab71f926b72b952c31702b721c6cd774c734ac1cbd32d0a0f2addcf38b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric pressure</topic><topic>Biodegradable materials</topic><topic>Cassava</topic><topic>corona treatment</topic><topic>Crosslinking</topic><topic>edible films</topic><topic>Electrodes</topic><topic>Fourier transforms</topic><topic>Gels</topic><topic>Hydrophobicity</topic><topic>Mechanical properties</topic><topic>modification</topic><topic>Packaging materials</topic><topic>Permeability</topic><topic>Plasma</topic><topic>Plastics industry</topic><topic>Polymerization</topic><topic>Rheological properties</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Starch</topic><topic>Starches</topic><topic>Surface treatment</topic><topic>Tensile strength</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Water absorption</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otálora González, Carlos Mauricio</creatorcontrib><creatorcontrib>Felix, Manuel</creatorcontrib><creatorcontrib>Bengoechea, Carlos</creatorcontrib><creatorcontrib>Flores, Silvia</creatorcontrib><creatorcontrib>Gerschenson, Lía Noemí</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Foods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otálora González, Carlos Mauricio</au><au>Felix, Manuel</au><au>Bengoechea, Carlos</au><au>Flores, Silvia</au><au>Gerschenson, Lía Noemí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Characterization of Edible Films Based on Cassava Starch Modified by Corona Treatment</atitle><jtitle>Foods</jtitle><addtitle>Foods</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>13</volume><issue>3</issue><spage>468</spage><pages>468-</pages><issn>2304-8158</issn><eissn>2304-8158</eissn><abstract>Corona treatment (CT), a surface treatment widely used in the plastic industry, can be used to alter the properties of cassava starch. In the present work, CT was performed on dry granular starch (DS), water-suspended humid granular starch (HS), and gelatinized starch (GS). Different properties and structural characteristics of treated starches were studied. A lowering in pH was generally observed after CT and the rheological properties depended on the starch presentation. A reinforcement of DS and HS samples after CT was deduced from higher viscosity values in flow assays and viscoelastic moduli, but weak gels were obtained when CT was applied to GS. Changes in the A-type polymorphic structure, as well as a drop in relative crystallinity, were produced by CT for DS and HS. Additionally, changes in O-H and C-O-C FTIR bands were observed. Therefore, CT can be applied for starch modification, producing predominantly cross-linking in the DS and de-polymerization in the HS. Casting films made from the modified DS showed higher tensile strength and lower hydrophilicity, solubility, water absorption capacity, and water vapor permeability. Thus, the DS cross-linking induced by CT improved mechanical characteristics and hydrophobicity in edible films, which can be better used as packaging materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38338603</pmid><doi>10.3390/foods13030468</doi><orcidid>https://orcid.org/0000-0002-3608-7035</orcidid><orcidid>https://orcid.org/0000-0003-3223-5384</orcidid><orcidid>https://orcid.org/0000-0002-4794-731X</orcidid><orcidid>https://orcid.org/0000-0002-6400-0435</orcidid><orcidid>https://orcid.org/0000-0002-6663-9697</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-8158
ispartof Foods, 2024-02, Vol.13 (3), p.468
issn 2304-8158
2304-8158
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c8644cae73544acc864846c7f1dcc6b7
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Atmospheric pressure
Biodegradable materials
Cassava
corona treatment
Crosslinking
edible films
Electrodes
Fourier transforms
Gels
Hydrophobicity
Mechanical properties
modification
Packaging materials
Permeability
Plasma
Plastics industry
Polymerization
Rheological properties
Software
Spectrum analysis
Starch
Starches
Surface treatment
Tensile strength
Viscoelasticity
Viscosity
Water absorption
Water vapor
title Development and Characterization of Edible Films Based on Cassava Starch Modified by Corona Treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Characterization%20of%20Edible%20Films%20Based%20on%20Cassava%20Starch%20Modified%20by%20Corona%20Treatment&rft.jtitle=Foods&rft.au=Ot%C3%A1lora%20Gonz%C3%A1lez,%20Carlos%20Mauricio&rft.date=2024-02-01&rft.volume=13&rft.issue=3&rft.spage=468&rft.pages=468-&rft.issn=2304-8158&rft.eissn=2304-8158&rft_id=info:doi/10.3390/foods13030468&rft_dat=%3Cgale_doaj_%3EA782090311%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-d8986aab71f926b72b952c31702b721c6cd774c734ac1cbd32d0a0f2addcf38b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923943779&rft_id=info:pmid/38338603&rft_galeid=A782090311&rfr_iscdi=true