Loading…

Magnetic Dipole Effects on Radiative Flow of Hybrid Nanofluid Past a Shrinking Sheet

The boundary layer flows exhibit symmetrical characteristics. In such cases, the flow patterns and variables are symmetrical with respect to a particular axis or plane. This symmetry simplifies the analysis and enables the use of symmetry-based boundary conditions or simplifications in mathematical...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2023-07, Vol.15 (7), p.1318
Main Authors: Waini, Iskandar, Khashi’ie, Najiyah Safwa, Zainal, Nurul Amira, Hamzah, Khairum Bin, Kasim, Abdul Rahman Mohd, Ishak, Anuar, Pop, Ioan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-6c2f3b6000a0596c1f63b00c1a52861b32a248402a5abf8513d323a4a39f319a3
container_end_page
container_issue 7
container_start_page 1318
container_title Symmetry (Basel)
container_volume 15
creator Waini, Iskandar
Khashi’ie, Najiyah Safwa
Zainal, Nurul Amira
Hamzah, Khairum Bin
Kasim, Abdul Rahman Mohd
Ishak, Anuar
Pop, Ioan
description The boundary layer flows exhibit symmetrical characteristics. In such cases, the flow patterns and variables are symmetrical with respect to a particular axis or plane. This symmetry simplifies the analysis and enables the use of symmetry-based boundary conditions or simplifications in mathematical models. Therefore, by using these concepts, the governing equations of the radiative flow of a hybrid nanofluid past a stretched and shrunken surface with the effect of a magnetic dipole are examined in this paper. Here, we consider copper (Cu) and alumina (Al2O3) as hybrid nanoparticles and use water as a base fluid. The heat transfer rate is enhanced in the presence of hybrid nanoparticles. It is observed that the heat transfer rate is increased by 10.92% for the nanofluid, while it has a 15.13% increment for the hybrid nanofluid compared to the base fluid. Also, the results reveal that the non-uniqueness of the solutions exists for a certain suction and shrinking strength. Additionally, the ferrohydrodynamic interaction has the tendency to reduce the skin friction and the heat transfer coefficients for both solution branches. For the upper branch solutions, the heat transfer rate increased over a stretching sheet but decreased for the shrinking sheet in the presence of the radiation. It is confirmed by the temporal stability analysis that one of the solutions is stable and acceptable as time evolves.
doi_str_mv 10.3390/sym15071318
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c86604129ea344b4b1e9a00fc0272a1e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759236131</galeid><doaj_id>oai_doaj_org_article_c86604129ea344b4b1e9a00fc0272a1e</doaj_id><sourcerecordid>A759236131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6c2f3b6000a0596c1f63b00c1a52861b32a248402a5abf8513d323a4a39f319a3</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoKDWlO_QFBj8WpRqOVV8fgOrHBaUKTnMWsVnLlrFeOtE7w31etQ8nMYR7De483TFV9AX6BqPn3fNhCzaeA0HyoTgWf4qTRWp68w5-q85w3vFTNa6n4afVwQ-vBjcGyH2EXe8fm3js7ZhYH9ou6QGN4ceyqj68serY4tCl07CcN0ff7gu4oj4zY_e8UhqcwrAtybvxcffTUZ3f-Ns-qx6v5w2wxWd1eL2eXq4lFBeNEWeGxVSUN8VorC15hy7kFqkWjoEVBQjaSC6qp9U0N2KFAkoTaI2jCs2p59O0ibcwuhS2lg4kUzL9FTGtDqdzWO2MbpbgEoR2hlK1swWni3FsupoLAFa-vR69dis97l0ezifs0lPhGNBIBdAlaWBdH1pqKaRh8HBPZ0p3bBhsH50PZX05rLcqJCEXw7SiwKeacnP8fE7j5-zbz7m34BxCphws</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843119600</pqid></control><display><type>article</type><title>Magnetic Dipole Effects on Radiative Flow of Hybrid Nanofluid Past a Shrinking Sheet</title><source>Publicly Available Content Database</source><creator>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Kasim, Abdul Rahman Mohd ; Ishak, Anuar ; Pop, Ioan</creator><creatorcontrib>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Kasim, Abdul Rahman Mohd ; Ishak, Anuar ; Pop, Ioan</creatorcontrib><description>The boundary layer flows exhibit symmetrical characteristics. In such cases, the flow patterns and variables are symmetrical with respect to a particular axis or plane. This symmetry simplifies the analysis and enables the use of symmetry-based boundary conditions or simplifications in mathematical models. Therefore, by using these concepts, the governing equations of the radiative flow of a hybrid nanofluid past a stretched and shrunken surface with the effect of a magnetic dipole are examined in this paper. Here, we consider copper (Cu) and alumina (Al2O3) as hybrid nanoparticles and use water as a base fluid. The heat transfer rate is enhanced in the presence of hybrid nanoparticles. It is observed that the heat transfer rate is increased by 10.92% for the nanofluid, while it has a 15.13% increment for the hybrid nanofluid compared to the base fluid. Also, the results reveal that the non-uniqueness of the solutions exists for a certain suction and shrinking strength. Additionally, the ferrohydrodynamic interaction has the tendency to reduce the skin friction and the heat transfer coefficients for both solution branches. For the upper branch solutions, the heat transfer rate increased over a stretching sheet but decreased for the shrinking sheet in the presence of the radiation. It is confirmed by the temporal stability analysis that one of the solutions is stable and acceptable as time evolves.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15071318</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum oxide ; Book publishing ; Boundary conditions ; Boundary layer flow ; Charged particles ; Comparative analysis ; Copper ; dual solution ; Flow distribution ; Friction reduction ; Heat conductivity ; Heat transfer ; Heat transfer coefficients ; hybrid nanofluid ; magnetic dipole ; Magnetic dipoles ; Magnetic fields ; Nanofluids ; Nanoparticles ; radiation ; shrinking sheet ; Skin friction ; Stability analysis ; Suction ; Symmetry ; Viscosity</subject><ispartof>Symmetry (Basel), 2023-07, Vol.15 (7), p.1318</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-6c2f3b6000a0596c1f63b00c1a52861b32a248402a5abf8513d323a4a39f319a3</cites><orcidid>0000-0003-3045-302X ; 0000-0003-0332-7853 ; 0000-0002-2353-5919 ; 0000-0002-9092-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843119600/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843119600?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Waini, Iskandar</creatorcontrib><creatorcontrib>Khashi’ie, Najiyah Safwa</creatorcontrib><creatorcontrib>Zainal, Nurul Amira</creatorcontrib><creatorcontrib>Hamzah, Khairum Bin</creatorcontrib><creatorcontrib>Kasim, Abdul Rahman Mohd</creatorcontrib><creatorcontrib>Ishak, Anuar</creatorcontrib><creatorcontrib>Pop, Ioan</creatorcontrib><title>Magnetic Dipole Effects on Radiative Flow of Hybrid Nanofluid Past a Shrinking Sheet</title><title>Symmetry (Basel)</title><description>The boundary layer flows exhibit symmetrical characteristics. In such cases, the flow patterns and variables are symmetrical with respect to a particular axis or plane. This symmetry simplifies the analysis and enables the use of symmetry-based boundary conditions or simplifications in mathematical models. Therefore, by using these concepts, the governing equations of the radiative flow of a hybrid nanofluid past a stretched and shrunken surface with the effect of a magnetic dipole are examined in this paper. Here, we consider copper (Cu) and alumina (Al2O3) as hybrid nanoparticles and use water as a base fluid. The heat transfer rate is enhanced in the presence of hybrid nanoparticles. It is observed that the heat transfer rate is increased by 10.92% for the nanofluid, while it has a 15.13% increment for the hybrid nanofluid compared to the base fluid. Also, the results reveal that the non-uniqueness of the solutions exists for a certain suction and shrinking strength. Additionally, the ferrohydrodynamic interaction has the tendency to reduce the skin friction and the heat transfer coefficients for both solution branches. For the upper branch solutions, the heat transfer rate increased over a stretching sheet but decreased for the shrinking sheet in the presence of the radiation. It is confirmed by the temporal stability analysis that one of the solutions is stable and acceptable as time evolves.</description><subject>Aluminum oxide</subject><subject>Book publishing</subject><subject>Boundary conditions</subject><subject>Boundary layer flow</subject><subject>Charged particles</subject><subject>Comparative analysis</subject><subject>Copper</subject><subject>dual solution</subject><subject>Flow distribution</subject><subject>Friction reduction</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>hybrid nanofluid</subject><subject>magnetic dipole</subject><subject>Magnetic dipoles</subject><subject>Magnetic fields</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>radiation</subject><subject>shrinking sheet</subject><subject>Skin friction</subject><subject>Stability analysis</subject><subject>Suction</subject><subject>Symmetry</subject><subject>Viscosity</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoKDWlO_QFBj8WpRqOVV8fgOrHBaUKTnMWsVnLlrFeOtE7w31etQ8nMYR7De483TFV9AX6BqPn3fNhCzaeA0HyoTgWf4qTRWp68w5-q85w3vFTNa6n4afVwQ-vBjcGyH2EXe8fm3js7ZhYH9ou6QGN4ceyqj68serY4tCl07CcN0ff7gu4oj4zY_e8UhqcwrAtybvxcffTUZ3f-Ns-qx6v5w2wxWd1eL2eXq4lFBeNEWeGxVSUN8VorC15hy7kFqkWjoEVBQjaSC6qp9U0N2KFAkoTaI2jCs2p59O0ibcwuhS2lg4kUzL9FTGtDqdzWO2MbpbgEoR2hlK1swWni3FsupoLAFa-vR69dis97l0ezifs0lPhGNBIBdAlaWBdH1pqKaRh8HBPZ0p3bBhsH50PZX05rLcqJCEXw7SiwKeacnP8fE7j5-zbz7m34BxCphws</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Waini, Iskandar</creator><creator>Khashi’ie, Najiyah Safwa</creator><creator>Zainal, Nurul Amira</creator><creator>Hamzah, Khairum Bin</creator><creator>Kasim, Abdul Rahman Mohd</creator><creator>Ishak, Anuar</creator><creator>Pop, Ioan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3045-302X</orcidid><orcidid>https://orcid.org/0000-0003-0332-7853</orcidid><orcidid>https://orcid.org/0000-0002-2353-5919</orcidid><orcidid>https://orcid.org/0000-0002-9092-8288</orcidid></search><sort><creationdate>20230701</creationdate><title>Magnetic Dipole Effects on Radiative Flow of Hybrid Nanofluid Past a Shrinking Sheet</title><author>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Kasim, Abdul Rahman Mohd ; Ishak, Anuar ; Pop, Ioan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6c2f3b6000a0596c1f63b00c1a52861b32a248402a5abf8513d323a4a39f319a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Book publishing</topic><topic>Boundary conditions</topic><topic>Boundary layer flow</topic><topic>Charged particles</topic><topic>Comparative analysis</topic><topic>Copper</topic><topic>dual solution</topic><topic>Flow distribution</topic><topic>Friction reduction</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>hybrid nanofluid</topic><topic>magnetic dipole</topic><topic>Magnetic dipoles</topic><topic>Magnetic fields</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>radiation</topic><topic>shrinking sheet</topic><topic>Skin friction</topic><topic>Stability analysis</topic><topic>Suction</topic><topic>Symmetry</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waini, Iskandar</creatorcontrib><creatorcontrib>Khashi’ie, Najiyah Safwa</creatorcontrib><creatorcontrib>Zainal, Nurul Amira</creatorcontrib><creatorcontrib>Hamzah, Khairum Bin</creatorcontrib><creatorcontrib>Kasim, Abdul Rahman Mohd</creatorcontrib><creatorcontrib>Ishak, Anuar</creatorcontrib><creatorcontrib>Pop, Ioan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waini, Iskandar</au><au>Khashi’ie, Najiyah Safwa</au><au>Zainal, Nurul Amira</au><au>Hamzah, Khairum Bin</au><au>Kasim, Abdul Rahman Mohd</au><au>Ishak, Anuar</au><au>Pop, Ioan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Dipole Effects on Radiative Flow of Hybrid Nanofluid Past a Shrinking Sheet</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>1318</spage><pages>1318-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>The boundary layer flows exhibit symmetrical characteristics. In such cases, the flow patterns and variables are symmetrical with respect to a particular axis or plane. This symmetry simplifies the analysis and enables the use of symmetry-based boundary conditions or simplifications in mathematical models. Therefore, by using these concepts, the governing equations of the radiative flow of a hybrid nanofluid past a stretched and shrunken surface with the effect of a magnetic dipole are examined in this paper. Here, we consider copper (Cu) and alumina (Al2O3) as hybrid nanoparticles and use water as a base fluid. The heat transfer rate is enhanced in the presence of hybrid nanoparticles. It is observed that the heat transfer rate is increased by 10.92% for the nanofluid, while it has a 15.13% increment for the hybrid nanofluid compared to the base fluid. Also, the results reveal that the non-uniqueness of the solutions exists for a certain suction and shrinking strength. Additionally, the ferrohydrodynamic interaction has the tendency to reduce the skin friction and the heat transfer coefficients for both solution branches. For the upper branch solutions, the heat transfer rate increased over a stretching sheet but decreased for the shrinking sheet in the presence of the radiation. It is confirmed by the temporal stability analysis that one of the solutions is stable and acceptable as time evolves.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym15071318</doi><orcidid>https://orcid.org/0000-0003-3045-302X</orcidid><orcidid>https://orcid.org/0000-0003-0332-7853</orcidid><orcidid>https://orcid.org/0000-0002-2353-5919</orcidid><orcidid>https://orcid.org/0000-0002-9092-8288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2023-07, Vol.15 (7), p.1318
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c86604129ea344b4b1e9a00fc0272a1e
source Publicly Available Content Database
subjects Aluminum oxide
Book publishing
Boundary conditions
Boundary layer flow
Charged particles
Comparative analysis
Copper
dual solution
Flow distribution
Friction reduction
Heat conductivity
Heat transfer
Heat transfer coefficients
hybrid nanofluid
magnetic dipole
Magnetic dipoles
Magnetic fields
Nanofluids
Nanoparticles
radiation
shrinking sheet
Skin friction
Stability analysis
Suction
Symmetry
Viscosity
title Magnetic Dipole Effects on Radiative Flow of Hybrid Nanofluid Past a Shrinking Sheet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Dipole%20Effects%20on%20Radiative%20Flow%20of%20Hybrid%20Nanofluid%20Past%20a%20Shrinking%20Sheet&rft.jtitle=Symmetry%20(Basel)&rft.au=Waini,%20Iskandar&rft.date=2023-07-01&rft.volume=15&rft.issue=7&rft.spage=1318&rft.pages=1318-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15071318&rft_dat=%3Cgale_doaj_%3EA759236131%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-6c2f3b6000a0596c1f63b00c1a52861b32a248402a5abf8513d323a4a39f319a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843119600&rft_id=info:pmid/&rft_galeid=A759236131&rfr_iscdi=true