Loading…

Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa

Energy storage for medium- to large-scale applications is an important aspect of balancing demand and supply cycles. Hydropower generation coupled with pumped hydro storage is an old but effective supply/demand buffer that is a function of the availability of a freshwater resource and the ability to...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-04, Vol.15 (7), p.2412
Main Authors: Alnaqbi, Shaima, Alasad, Shamma, Aljaghoub, Haya, Alami, Abdul, Abdelkareem, Mohammad, Olabi, Abdul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Energy storage for medium- to large-scale applications is an important aspect of balancing demand and supply cycles. Hydropower generation coupled with pumped hydro storage is an old but effective supply/demand buffer that is a function of the availability of a freshwater resource and the ability to construct an elevated water reservoir. This work reviews the technological feasibility of hydropower generation and also pumped hydro storage and its geographical distribution around the world. There is also an emphasis on installations in the Middle East and North Africa (MENA) in terms of available capacity as well as past and future developments and expansions. A discussion is presented on a project taking place in the United Arab Emirates (UAE) in the Hatta region, which has a water reservoir that would be fit for utilization for pumped hydro storage applications. Once the project is commissioned in 2024, it will provide an estimated 2.06 TWh per year, helping the UAE achieve the goal of relying on 25% renewable energy resources in their energy mix by 2030. These results were obtained by using EnergyPLAN software to project the effect of utilizing various energy resources to face the expected demand of ~38 TWh in 2030.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15072412