Loading…

Conductive single-phase SrMoO3 epitaxial films synthesized in pure Ar ambience via plasma-assisted radio frequency sputtering

The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindere...

Full description

Saved in:
Bibliographic Details
Published in:Science and technology of advanced materials 2024-12, Vol.25 (1), p.2378684
Main Authors: Roy-Chowdhury, Mouli, He, Cong, Tang, Ke, Koizumi, Hiroki, Wen, Zhenchao, Thota, Subhash, Sukegawa, Hiroaki, Ohkubo, Tadakatsu, Mitani, Seiji
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 2378684
container_title Science and technology of advanced materials
container_volume 25
creator Roy-Chowdhury, Mouli
He, Cong
Tang, Ke
Koizumi, Hiroki
Wen, Zhenchao
Thota, Subhash
Sukegawa, Hiroaki
Ohkubo, Tadakatsu
Mitani, Seiji
description The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindered their practical use, especially due to the formation of thermodynamically favorable SrMoO4 impurity. In this work, we developed a radio frequency sputtering technology enabling the reduction reaction and achieved conductive epitaxial SrMoO3 films with pure phase from a SrMoO4 target in a hydrogen-free, pure argon environment. We demonstrated the significance of controlling the target-to-substrate distance (TSD) on the synthesis of SrMoO3; the film resistivity drastically changes from 1.46 × 105 μΩ·cm to 250 μΩ·cm by adjusting the TSD. Cross-sectional microstructural analyses demonstrated that films with the lowest resistivity, deposited for TSD = 2.5 cm, possess a single-phase SrMoO3 with an epitaxial perovskite structure. The formation mechanism of the conductive single-phase SrMoO3 films can be attributed to the plasma-assisted growth process by tuning the TSD. Temperature-dependent resistivity and Hall effect studies revealed metal-like conducting properties for low-resistive SrMoO3 films, while the high-resistive ones displayed semiconductor-like behavior. Our approach makes hydrogen-free, reliable and cost-efficient scalable deposition of SrMoO3 films possible, which may open up promising prospects for a wide range of future applications of oxide materials.
doi_str_mv 10.1080/14686996.2024.2378684
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c8a50bae1b024dc09eeafb05924be164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8a50bae1b024dc09eeafb05924be164</doaj_id><sourcerecordid>3148715634</sourcerecordid><originalsourceid>FETCH-LOGICAL-d268t-b958a719acfac49fa00d45af00c5ecbb4728015293f25ec5b6ab8736b9f8bb853</originalsourceid><addsrcrecordid>eNpdkE2LFDEQhhtRcF39CULAi5ce893JSZbBj4WVPajnUElXz2ToL5P04gj-d6O7l_VUxVsPT8HbNK8Z3TFq6DsmtdHW6h2nXO646Iw28klzwUxnWqWYfFr3yrR_oefNi5xPlFLNuLxofu-Xud9CiXdIcpwPI7brETKSr-nLcisIrrHAzwgjGeI4ZZLPczlijr-wJ3Em65aQXCUCk484ByR3Ecg6Qp6ghZxjLpVL0MeFDAl_bJU5k7xupWCq3142zwYYM756mJfN948fvu0_tze3n673Vzdtz7UprbfKQMcshAGCtANQ2ksFA6VBYfBedtxQprgVA6-B8hq86YT2djDeGyUum-t7b7_Aya0pTpDOboHo_gVLOjhIJYYRXTCgqAdkvpbZB2oRYfBUWS49Mi2r6_29a938hH3AuSQYH0kfX-Z4dIflzjEmmJGWVsPbB0NaaiW5uCnmgOMIMy5bdoJaLrRmnajom__Q07KluXblBJOmY0oLKf4A1NSiiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148715634</pqid></control><display><type>article</type><title>Conductive single-phase SrMoO3 epitaxial films synthesized in pure Ar ambience via plasma-assisted radio frequency sputtering</title><source>PubMed Central (PMC)</source><source>Taylor &amp; Francis Open Access Journals</source><creator>Roy-Chowdhury, Mouli ; He, Cong ; Tang, Ke ; Koizumi, Hiroki ; Wen, Zhenchao ; Thota, Subhash ; Sukegawa, Hiroaki ; Ohkubo, Tadakatsu ; Mitani, Seiji</creator><creatorcontrib>Roy-Chowdhury, Mouli ; He, Cong ; Tang, Ke ; Koizumi, Hiroki ; Wen, Zhenchao ; Thota, Subhash ; Sukegawa, Hiroaki ; Ohkubo, Tadakatsu ; Mitani, Seiji</creatorcontrib><description>The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindered their practical use, especially due to the formation of thermodynamically favorable SrMoO4 impurity. In this work, we developed a radio frequency sputtering technology enabling the reduction reaction and achieved conductive epitaxial SrMoO3 films with pure phase from a SrMoO4 target in a hydrogen-free, pure argon environment. We demonstrated the significance of controlling the target-to-substrate distance (TSD) on the synthesis of SrMoO3; the film resistivity drastically changes from 1.46 × 105 μΩ·cm to 250 μΩ·cm by adjusting the TSD. Cross-sectional microstructural analyses demonstrated that films with the lowest resistivity, deposited for TSD = 2.5 cm, possess a single-phase SrMoO3 with an epitaxial perovskite structure. The formation mechanism of the conductive single-phase SrMoO3 films can be attributed to the plasma-assisted growth process by tuning the TSD. Temperature-dependent resistivity and Hall effect studies revealed metal-like conducting properties for low-resistive SrMoO3 films, while the high-resistive ones displayed semiconductor-like behavior. Our approach makes hydrogen-free, reliable and cost-efficient scalable deposition of SrMoO3 films possible, which may open up promising prospects for a wide range of future applications of oxide materials.</description><identifier>ISSN: 1468-6996</identifier><identifier>EISSN: 1878-5514</identifier><identifier>DOI: 10.1080/14686996.2024.2378684</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Ltd</publisher><subject>Argon ; Chemical reduction ; Conductive SrMoO3 ; Electrical resistivity ; Epitaxial growth ; epitaxial thin films ; Hall effect ; Hydrogen ; Optical, Magnetic and Electronic Device Materials ; Perovskite structure ; Perovskites ; plasma-assisted sputtering ; Radio frequency ; Room temperature ; Sputtering ; Substrates ; target-to-substrate distance ; Temperature dependence ; Thin films</subject><ispartof>Science and technology of advanced materials, 2024-12, Vol.25 (1), p.2378684</ispartof><rights>2024 The Author(s). Published by National Institute for Materials Science in partnership with Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Published by National Institute for Materials Science in partnership with Taylor &amp; Francis Group.</rights><rights>2024 The Author(s). Published by National Institute for Materials Science in partnership with Taylor &amp; Francis Group. 2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Roy-Chowdhury, Mouli</creatorcontrib><creatorcontrib>He, Cong</creatorcontrib><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Koizumi, Hiroki</creatorcontrib><creatorcontrib>Wen, Zhenchao</creatorcontrib><creatorcontrib>Thota, Subhash</creatorcontrib><creatorcontrib>Sukegawa, Hiroaki</creatorcontrib><creatorcontrib>Ohkubo, Tadakatsu</creatorcontrib><creatorcontrib>Mitani, Seiji</creatorcontrib><title>Conductive single-phase SrMoO3 epitaxial films synthesized in pure Ar ambience via plasma-assisted radio frequency sputtering</title><title>Science and technology of advanced materials</title><description>The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindered their practical use, especially due to the formation of thermodynamically favorable SrMoO4 impurity. In this work, we developed a radio frequency sputtering technology enabling the reduction reaction and achieved conductive epitaxial SrMoO3 films with pure phase from a SrMoO4 target in a hydrogen-free, pure argon environment. We demonstrated the significance of controlling the target-to-substrate distance (TSD) on the synthesis of SrMoO3; the film resistivity drastically changes from 1.46 × 105 μΩ·cm to 250 μΩ·cm by adjusting the TSD. Cross-sectional microstructural analyses demonstrated that films with the lowest resistivity, deposited for TSD = 2.5 cm, possess a single-phase SrMoO3 with an epitaxial perovskite structure. The formation mechanism of the conductive single-phase SrMoO3 films can be attributed to the plasma-assisted growth process by tuning the TSD. Temperature-dependent resistivity and Hall effect studies revealed metal-like conducting properties for low-resistive SrMoO3 films, while the high-resistive ones displayed semiconductor-like behavior. Our approach makes hydrogen-free, reliable and cost-efficient scalable deposition of SrMoO3 films possible, which may open up promising prospects for a wide range of future applications of oxide materials.</description><subject>Argon</subject><subject>Chemical reduction</subject><subject>Conductive SrMoO3</subject><subject>Electrical resistivity</subject><subject>Epitaxial growth</subject><subject>epitaxial thin films</subject><subject>Hall effect</subject><subject>Hydrogen</subject><subject>Optical, Magnetic and Electronic Device Materials</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>plasma-assisted sputtering</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>Sputtering</subject><subject>Substrates</subject><subject>target-to-substrate distance</subject><subject>Temperature dependence</subject><subject>Thin films</subject><issn>1468-6996</issn><issn>1878-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkE2LFDEQhhtRcF39CULAi5ce893JSZbBj4WVPajnUElXz2ToL5P04gj-d6O7l_VUxVsPT8HbNK8Z3TFq6DsmtdHW6h2nXO646Iw28klzwUxnWqWYfFr3yrR_oefNi5xPlFLNuLxofu-Xud9CiXdIcpwPI7brETKSr-nLcisIrrHAzwgjGeI4ZZLPczlijr-wJ3Em65aQXCUCk484ByR3Ecg6Qp6ghZxjLpVL0MeFDAl_bJU5k7xupWCq3142zwYYM756mJfN948fvu0_tze3n673Vzdtz7UprbfKQMcshAGCtANQ2ksFA6VBYfBedtxQprgVA6-B8hq86YT2djDeGyUum-t7b7_Aya0pTpDOboHo_gVLOjhIJYYRXTCgqAdkvpbZB2oRYfBUWS49Mi2r6_29a938hH3AuSQYH0kfX-Z4dIflzjEmmJGWVsPbB0NaaiW5uCnmgOMIMy5bdoJaLrRmnajom__Q07KluXblBJOmY0oLKf4A1NSiiw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Roy-Chowdhury, Mouli</creator><creator>He, Cong</creator><creator>Tang, Ke</creator><creator>Koizumi, Hiroki</creator><creator>Wen, Zhenchao</creator><creator>Thota, Subhash</creator><creator>Sukegawa, Hiroaki</creator><creator>Ohkubo, Tadakatsu</creator><creator>Mitani, Seiji</creator><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JG9</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Conductive single-phase SrMoO3 epitaxial films synthesized in pure Ar ambience via plasma-assisted radio frequency sputtering</title><author>Roy-Chowdhury, Mouli ; He, Cong ; Tang, Ke ; Koizumi, Hiroki ; Wen, Zhenchao ; Thota, Subhash ; Sukegawa, Hiroaki ; Ohkubo, Tadakatsu ; Mitani, Seiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d268t-b958a719acfac49fa00d45af00c5ecbb4728015293f25ec5b6ab8736b9f8bb853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Argon</topic><topic>Chemical reduction</topic><topic>Conductive SrMoO3</topic><topic>Electrical resistivity</topic><topic>Epitaxial growth</topic><topic>epitaxial thin films</topic><topic>Hall effect</topic><topic>Hydrogen</topic><topic>Optical, Magnetic and Electronic Device Materials</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>plasma-assisted sputtering</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>Sputtering</topic><topic>Substrates</topic><topic>target-to-substrate distance</topic><topic>Temperature dependence</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy-Chowdhury, Mouli</creatorcontrib><creatorcontrib>He, Cong</creatorcontrib><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Koizumi, Hiroki</creatorcontrib><creatorcontrib>Wen, Zhenchao</creatorcontrib><creatorcontrib>Thota, Subhash</creatorcontrib><creatorcontrib>Sukegawa, Hiroaki</creatorcontrib><creatorcontrib>Ohkubo, Tadakatsu</creatorcontrib><creatorcontrib>Mitani, Seiji</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of advanced materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy-Chowdhury, Mouli</au><au>He, Cong</au><au>Tang, Ke</au><au>Koizumi, Hiroki</au><au>Wen, Zhenchao</au><au>Thota, Subhash</au><au>Sukegawa, Hiroaki</au><au>Ohkubo, Tadakatsu</au><au>Mitani, Seiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive single-phase SrMoO3 epitaxial films synthesized in pure Ar ambience via plasma-assisted radio frequency sputtering</atitle><jtitle>Science and technology of advanced materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>2378684</spage><pages>2378684-</pages><issn>1468-6996</issn><eissn>1878-5514</eissn><abstract>The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindered their practical use, especially due to the formation of thermodynamically favorable SrMoO4 impurity. In this work, we developed a radio frequency sputtering technology enabling the reduction reaction and achieved conductive epitaxial SrMoO3 films with pure phase from a SrMoO4 target in a hydrogen-free, pure argon environment. We demonstrated the significance of controlling the target-to-substrate distance (TSD) on the synthesis of SrMoO3; the film resistivity drastically changes from 1.46 × 105 μΩ·cm to 250 μΩ·cm by adjusting the TSD. Cross-sectional microstructural analyses demonstrated that films with the lowest resistivity, deposited for TSD = 2.5 cm, possess a single-phase SrMoO3 with an epitaxial perovskite structure. The formation mechanism of the conductive single-phase SrMoO3 films can be attributed to the plasma-assisted growth process by tuning the TSD. Temperature-dependent resistivity and Hall effect studies revealed metal-like conducting properties for low-resistive SrMoO3 films, while the high-resistive ones displayed semiconductor-like behavior. Our approach makes hydrogen-free, reliable and cost-efficient scalable deposition of SrMoO3 films possible, which may open up promising prospects for a wide range of future applications of oxide materials.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/14686996.2024.2378684</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-6996
ispartof Science and technology of advanced materials, 2024-12, Vol.25 (1), p.2378684
issn 1468-6996
1878-5514
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c8a50bae1b024dc09eeafb05924be164
source PubMed Central (PMC); Taylor & Francis Open Access Journals
subjects Argon
Chemical reduction
Conductive SrMoO3
Electrical resistivity
Epitaxial growth
epitaxial thin films
Hall effect
Hydrogen
Optical, Magnetic and Electronic Device Materials
Perovskite structure
Perovskites
plasma-assisted sputtering
Radio frequency
Room temperature
Sputtering
Substrates
target-to-substrate distance
Temperature dependence
Thin films
title Conductive single-phase SrMoO3 epitaxial films synthesized in pure Ar ambience via plasma-assisted radio frequency sputtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20single-phase%20SrMoO3%20epitaxial%20films%20synthesized%20in%20pure%20Ar%20ambience%20via%20plasma-assisted%20radio%20frequency%20sputtering&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials&rft.au=Roy-Chowdhury,%20Mouli&rft.date=2024-12-01&rft.volume=25&rft.issue=1&rft.spage=2378684&rft.pages=2378684-&rft.issn=1468-6996&rft.eissn=1878-5514&rft_id=info:doi/10.1080/14686996.2024.2378684&rft_dat=%3Cproquest_doaj_%3E3148715634%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d268t-b958a719acfac49fa00d45af00c5ecbb4728015293f25ec5b6ab8736b9f8bb853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148715634&rft_id=info:pmid/&rfr_iscdi=true