Loading…

In-gap band formation in a periodically driven charge density wave insulator

Modern time-resolved spectroscopy experiments on quantum materials raise the question, how strong electron-electron interactions, in combination with periodic driving, form unconventional transient states. Here we show using numerically exact methods that in a driven strongly interacting charge-dens...

Full description

Saved in:
Bibliographic Details
Published in:Communications physics 2023-09, Vol.6 (1), p.245-11, Article 245
Main Authors: Osterkorn, Alexander, Meyer, Constantin, Manmana, Salvatore R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c380t-9be07821b2c298bfa85ddbd31d7d696050547a69e761e61638ecabc8df07a5fb3
container_end_page 11
container_issue 1
container_start_page 245
container_title Communications physics
container_volume 6
creator Osterkorn, Alexander
Meyer, Constantin
Manmana, Salvatore R.
description Modern time-resolved spectroscopy experiments on quantum materials raise the question, how strong electron-electron interactions, in combination with periodic driving, form unconventional transient states. Here we show using numerically exact methods that in a driven strongly interacting charge-density-wave insulator a band-like resonance in the gap region is formed. We associate this feature to the so-called Villain mode in quantum-magnetic materials, which originates in moving domain walls induced by the interaction. We do not obtain the in-gap band when driving a non-interacting charge density wave model. In contrast, it appears in the interacting system also in equilibrium at intermediate temperatures and in the short-time evolution of the system after a quantum quench to the lowest-order high-frequency effective Floquet Hamiltonian. Our findings connect the phenomenology of a periodically driven strongly correlated system and its quench dynamics to the finite-temperature dynamical response of quantum-magnetic materials and will be insightful for future investigations of strongly correlated materials in pump-probe setups. The interplay of strong electronic interactions and periodic driving leads to new effects in nonequilibrium quantum-many body systems. The authors find an in-gap band, which is due to moving domain walls, similar to the so-called Villain-mode of quantum magnets.
doi_str_mv 10.1038/s42005-023-01346-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c8c09a07ab9844d38e428e806c96aefc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8c09a07ab9844d38e428e806c96aefc</doaj_id><sourcerecordid>2862683019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9be07821b2c298bfa85ddbd31d7d696050547a69e761e61638ecabc8df07a5fb3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosoKLp_wFPAc3WStGlyFPFjYcGLnsM0SWuW2qxJV9l_b9yKevKUITzvMwNvUZxTuKTA5VWqGEBdAuMlUF6Jkh0UJ4wrVXJRw-Gf-bhYpLQGAEYraLg4KVbLsexxQ1ocLelCfMXJh5H4kSDZuOiD9QaHYUds9O9uJOYFY--IdWPy04584LvLcNoOOIV4Vhx1OCS3-H5Pi-e726ebh3L1eL-8uV6VhkuYStU6aCSjLTNMybZDWVvbWk5tY4USUENdNSiUawR1ggouncHWSNtBg3XX8tNiOXttwLXeRP-KcacDer3_CLHXGCdvBqeNNKAw51olq8pmVcWkkyCMEug6k10Xs2sTw9vWpUmvwzaO-XzNpGBCcqAqU2ymTAwpRdf9bKWgv0rQcwk6l6D3JWiWQ3wOpQyPvYu_6n9Sn6IXiV0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862683019</pqid></control><display><type>article</type><title>In-gap band formation in a periodically driven charge density wave insulator</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Osterkorn, Alexander ; Meyer, Constantin ; Manmana, Salvatore R.</creator><creatorcontrib>Osterkorn, Alexander ; Meyer, Constantin ; Manmana, Salvatore R.</creatorcontrib><description>Modern time-resolved spectroscopy experiments on quantum materials raise the question, how strong electron-electron interactions, in combination with periodic driving, form unconventional transient states. Here we show using numerically exact methods that in a driven strongly interacting charge-density-wave insulator a band-like resonance in the gap region is formed. We associate this feature to the so-called Villain mode in quantum-magnetic materials, which originates in moving domain walls induced by the interaction. We do not obtain the in-gap band when driving a non-interacting charge density wave model. In contrast, it appears in the interacting system also in equilibrium at intermediate temperatures and in the short-time evolution of the system after a quantum quench to the lowest-order high-frequency effective Floquet Hamiltonian. Our findings connect the phenomenology of a periodically driven strongly correlated system and its quench dynamics to the finite-temperature dynamical response of quantum-magnetic materials and will be insightful for future investigations of strongly correlated materials in pump-probe setups. The interplay of strong electronic interactions and periodic driving leads to new effects in nonequilibrium quantum-many body systems. The authors find an in-gap band, which is due to moving domain walls, similar to the so-called Villain-mode of quantum magnets.</description><identifier>ISSN: 2399-3650</identifier><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-023-01346-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/995 ; 639/766/483/640 ; Boundary conditions ; Charge density waves ; Density wave model ; Domain walls ; Electrons ; Equilibrium ; Investigations ; Magnetic materials ; Magnets ; Numerical methods ; Phenomenology ; Physics ; Physics and Astronomy ; Spectrum analysis ; Temperature</subject><ispartof>Communications physics, 2023-09, Vol.6 (1), p.245-11, Article 245</ispartof><rights>The Author(s) 2023. corrected publication 2023</rights><rights>The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-9be07821b2c298bfa85ddbd31d7d696050547a69e761e61638ecabc8df07a5fb3</cites><orcidid>0000-0002-4070-0576 ; 0000-0003-3287-6114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2862683019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Osterkorn, Alexander</creatorcontrib><creatorcontrib>Meyer, Constantin</creatorcontrib><creatorcontrib>Manmana, Salvatore R.</creatorcontrib><title>In-gap band formation in a periodically driven charge density wave insulator</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>Modern time-resolved spectroscopy experiments on quantum materials raise the question, how strong electron-electron interactions, in combination with periodic driving, form unconventional transient states. Here we show using numerically exact methods that in a driven strongly interacting charge-density-wave insulator a band-like resonance in the gap region is formed. We associate this feature to the so-called Villain mode in quantum-magnetic materials, which originates in moving domain walls induced by the interaction. We do not obtain the in-gap band when driving a non-interacting charge density wave model. In contrast, it appears in the interacting system also in equilibrium at intermediate temperatures and in the short-time evolution of the system after a quantum quench to the lowest-order high-frequency effective Floquet Hamiltonian. Our findings connect the phenomenology of a periodically driven strongly correlated system and its quench dynamics to the finite-temperature dynamical response of quantum-magnetic materials and will be insightful for future investigations of strongly correlated materials in pump-probe setups. The interplay of strong electronic interactions and periodic driving leads to new effects in nonequilibrium quantum-many body systems. The authors find an in-gap band, which is due to moving domain walls, similar to the so-called Villain-mode of quantum magnets.</description><subject>639/766/119/995</subject><subject>639/766/483/640</subject><subject>Boundary conditions</subject><subject>Charge density waves</subject><subject>Density wave model</subject><subject>Domain walls</subject><subject>Electrons</subject><subject>Equilibrium</subject><subject>Investigations</subject><subject>Magnetic materials</subject><subject>Magnets</subject><subject>Numerical methods</subject><subject>Phenomenology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><issn>2399-3650</issn><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LxDAQhosoKLp_wFPAc3WStGlyFPFjYcGLnsM0SWuW2qxJV9l_b9yKevKUITzvMwNvUZxTuKTA5VWqGEBdAuMlUF6Jkh0UJ4wrVXJRw-Gf-bhYpLQGAEYraLg4KVbLsexxQ1ocLelCfMXJh5H4kSDZuOiD9QaHYUds9O9uJOYFY--IdWPy04584LvLcNoOOIV4Vhx1OCS3-H5Pi-e726ebh3L1eL-8uV6VhkuYStU6aCSjLTNMybZDWVvbWk5tY4USUENdNSiUawR1ggouncHWSNtBg3XX8tNiOXttwLXeRP-KcacDer3_CLHXGCdvBqeNNKAw51olq8pmVcWkkyCMEug6k10Xs2sTw9vWpUmvwzaO-XzNpGBCcqAqU2ymTAwpRdf9bKWgv0rQcwk6l6D3JWiWQ3wOpQyPvYu_6n9Sn6IXiV0</recordid><startdate>20230908</startdate><enddate>20230908</enddate><creator>Osterkorn, Alexander</creator><creator>Meyer, Constantin</creator><creator>Manmana, Salvatore R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4070-0576</orcidid><orcidid>https://orcid.org/0000-0003-3287-6114</orcidid></search><sort><creationdate>20230908</creationdate><title>In-gap band formation in a periodically driven charge density wave insulator</title><author>Osterkorn, Alexander ; Meyer, Constantin ; Manmana, Salvatore R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9be07821b2c298bfa85ddbd31d7d696050547a69e761e61638ecabc8df07a5fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/119/995</topic><topic>639/766/483/640</topic><topic>Boundary conditions</topic><topic>Charge density waves</topic><topic>Density wave model</topic><topic>Domain walls</topic><topic>Electrons</topic><topic>Equilibrium</topic><topic>Investigations</topic><topic>Magnetic materials</topic><topic>Magnets</topic><topic>Numerical methods</topic><topic>Phenomenology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osterkorn, Alexander</creatorcontrib><creatorcontrib>Meyer, Constantin</creatorcontrib><creatorcontrib>Manmana, Salvatore R.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osterkorn, Alexander</au><au>Meyer, Constantin</au><au>Manmana, Salvatore R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-gap band formation in a periodically driven charge density wave insulator</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2023-09-08</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>245</spage><epage>11</epage><pages>245-11</pages><artnum>245</artnum><issn>2399-3650</issn><eissn>2399-3650</eissn><abstract>Modern time-resolved spectroscopy experiments on quantum materials raise the question, how strong electron-electron interactions, in combination with periodic driving, form unconventional transient states. Here we show using numerically exact methods that in a driven strongly interacting charge-density-wave insulator a band-like resonance in the gap region is formed. We associate this feature to the so-called Villain mode in quantum-magnetic materials, which originates in moving domain walls induced by the interaction. We do not obtain the in-gap band when driving a non-interacting charge density wave model. In contrast, it appears in the interacting system also in equilibrium at intermediate temperatures and in the short-time evolution of the system after a quantum quench to the lowest-order high-frequency effective Floquet Hamiltonian. Our findings connect the phenomenology of a periodically driven strongly correlated system and its quench dynamics to the finite-temperature dynamical response of quantum-magnetic materials and will be insightful for future investigations of strongly correlated materials in pump-probe setups. The interplay of strong electronic interactions and periodic driving leads to new effects in nonequilibrium quantum-many body systems. The authors find an in-gap band, which is due to moving domain walls, similar to the so-called Villain-mode of quantum magnets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-023-01346-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4070-0576</orcidid><orcidid>https://orcid.org/0000-0003-3287-6114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3650
ispartof Communications physics, 2023-09, Vol.6 (1), p.245-11, Article 245
issn 2399-3650
2399-3650
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c8c09a07ab9844d38e428e806c96aefc
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/119/995
639/766/483/640
Boundary conditions
Charge density waves
Density wave model
Domain walls
Electrons
Equilibrium
Investigations
Magnetic materials
Magnets
Numerical methods
Phenomenology
Physics
Physics and Astronomy
Spectrum analysis
Temperature
title In-gap band formation in a periodically driven charge density wave insulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-gap%20band%20formation%20in%20a%20periodically%20driven%20charge%20density%20wave%20insulator&rft.jtitle=Communications%20physics&rft.au=Osterkorn,%20Alexander&rft.date=2023-09-08&rft.volume=6&rft.issue=1&rft.spage=245&rft.epage=11&rft.pages=245-11&rft.artnum=245&rft.issn=2399-3650&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-023-01346-2&rft_dat=%3Cproquest_doaj_%3E2862683019%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-9be07821b2c298bfa85ddbd31d7d696050547a69e761e61638ecabc8df07a5fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862683019&rft_id=info:pmid/&rfr_iscdi=true