Loading…

Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource

The wave energy sector has not reached a sufficient level of maturity for commercial competitiveness, thus requiring further efforts towards optimizing existing technologies and making wave energy a viable alternative to bolster energy mixes. Usually, these efforts are supported by physical and nume...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-06, Vol.16 (12), p.4660
Main Authors: Clemente, Daniel, Teixeira-Duarte, Felipe, Rosa-Santos, Paulo, Taveira-Pinto, Francisco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-b34b03d76383cc77772944d6975db91a075949ec842f93617a771700b623760e3
cites cdi_FETCH-LOGICAL-c400t-b34b03d76383cc77772944d6975db91a075949ec842f93617a771700b623760e3
container_end_page
container_issue 12
container_start_page 4660
container_title Energies (Basel)
container_volume 16
creator Clemente, Daniel
Teixeira-Duarte, Felipe
Rosa-Santos, Paulo
Taveira-Pinto, Francisco
description The wave energy sector has not reached a sufficient level of maturity for commercial competitiveness, thus requiring further efforts towards optimizing existing technologies and making wave energy a viable alternative to bolster energy mixes. Usually, these efforts are supported by physical and numerical modelling of complex physical phenomena, which require extensive resources and time to obtain reliable, yet limited results. To complement these approaches, artificial-intelligence-based techniques (AI) are gaining increasing interest, given their computational speed and capability of searching large solution spaces and/or identifying key study patterns. Under this scope, this paper presents a comprehensive review on the use of computational systems and AI-based techniques to wave climate and energy resource studies. The paper reviews different optimization methods, analyses their application to extreme events and examines their use in wave propagation and forecasting, which are pivotal towards ensuring survivability and assessing the local wave operational conditions, respectively. The use of AI has shown promising results in improving the efficiency, accuracy and reliability of wave predictions and can enable a more thorough and automated sweep of alternative design solutions, within a more reasonable timeframe and at a lower computational cost. However, the particularities of each case study still limit generalizations, although some application patterns have been identified—such as the frequent use of neural networks.
doi_str_mv 10.3390/en16124660
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c8d1d0d8076541c385e54a321d1e58ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758282307</galeid><doaj_id>oai_doaj_org_article_c8d1d0d8076541c385e54a321d1e58ba</doaj_id><sourcerecordid>A758282307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b34b03d76383cc77772944d6975db91a075949ec842f93617a771700b623760e3</originalsourceid><addsrcrecordid>eNpNUU2LFDEQbUTBZdyLvyDgTZg16Urnw1szrLqwsCCKxyadVI8ZupM2yY7s_nozO35VHapSvPd44TXNa0avADR9h4EJ1nIh6LPmgmkttoxKeP7f_rK5zPlAawEwALhoHnt3NMHigqFkEgO5W4tf_KMpvj76eR-TL9-XTPp1nT06UiL5Zo5IrgOm_QPpc8acT-z3pK_sI6ajx58npSfYbvaLKUhMcH8onzHH-2TxVfNiMnPGy99z03z9cP1l92l7e_fxZtffbi2ntGxH4CMFJwUosFbWajXnTmjZuVEzQ2WnuUareDtpEEwaKZmkdBQtSEERNs3NWddFcxjWVA2lhyEaPzwdYtoPJhVvZxyscsxRp6gUHWcWVIcdN9Ayx7BTo6lab85aa4o_7jGX4VD_Eqr9oVWtllorrirq6ozamyrqwxRLMra2w8XbGHDy9d7LTlUS1Fw2zdszwaaYc8Lpr01Gh1O2w79s4Re5t5RI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829799848</pqid></control><display><type>article</type><title>Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource</title><source>Publicly Available Content (ProQuest)</source><creator>Clemente, Daniel ; Teixeira-Duarte, Felipe ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco</creator><creatorcontrib>Clemente, Daniel ; Teixeira-Duarte, Felipe ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco</creatorcontrib><description>The wave energy sector has not reached a sufficient level of maturity for commercial competitiveness, thus requiring further efforts towards optimizing existing technologies and making wave energy a viable alternative to bolster energy mixes. Usually, these efforts are supported by physical and numerical modelling of complex physical phenomena, which require extensive resources and time to obtain reliable, yet limited results. To complement these approaches, artificial-intelligence-based techniques (AI) are gaining increasing interest, given their computational speed and capability of searching large solution spaces and/or identifying key study patterns. Under this scope, this paper presents a comprehensive review on the use of computational systems and AI-based techniques to wave climate and energy resource studies. The paper reviews different optimization methods, analyses their application to extreme events and examines their use in wave propagation and forecasting, which are pivotal towards ensuring survivability and assessing the local wave operational conditions, respectively. The use of AI has shown promising results in improving the efficiency, accuracy and reliability of wave predictions and can enable a more thorough and automated sweep of alternative design solutions, within a more reasonable timeframe and at a lower computational cost. However, the particularities of each case study still limit generalizations, although some application patterns have been identified—such as the frequent use of neural networks.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16124660</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alternative energy ; Alternative energy sources ; Analysis ; Artificial intelligence ; Case studies ; Competitiveness ; Computer applications ; Electricity generation ; Energy industry ; Energy sources ; evolutionary algorithms ; Flow velocity ; Genetic algorithms ; Learning curves ; Mathematical optimization ; metaheuristic algorithms ; Neural networks ; Neurons ; Numerical models ; Optimization ; Optimization algorithms ; renewable wave energy ; Reviews ; Software ; Solution space ; Survivability ; wave conditions prediction ; Wave energy ; Wave power ; Wave propagation</subject><ispartof>Energies (Basel), 2023-06, Vol.16 (12), p.4660</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b34b03d76383cc77772944d6975db91a075949ec842f93617a771700b623760e3</citedby><cites>FETCH-LOGICAL-c400t-b34b03d76383cc77772944d6975db91a075949ec842f93617a771700b623760e3</cites><orcidid>0000-0003-4599-9287 ; 0000-0002-3768-3314 ; 0000-0003-4612-241X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829799848/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829799848?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Clemente, Daniel</creatorcontrib><creatorcontrib>Teixeira-Duarte, Felipe</creatorcontrib><creatorcontrib>Rosa-Santos, Paulo</creatorcontrib><creatorcontrib>Taveira-Pinto, Francisco</creatorcontrib><title>Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource</title><title>Energies (Basel)</title><description>The wave energy sector has not reached a sufficient level of maturity for commercial competitiveness, thus requiring further efforts towards optimizing existing technologies and making wave energy a viable alternative to bolster energy mixes. Usually, these efforts are supported by physical and numerical modelling of complex physical phenomena, which require extensive resources and time to obtain reliable, yet limited results. To complement these approaches, artificial-intelligence-based techniques (AI) are gaining increasing interest, given their computational speed and capability of searching large solution spaces and/or identifying key study patterns. Under this scope, this paper presents a comprehensive review on the use of computational systems and AI-based techniques to wave climate and energy resource studies. The paper reviews different optimization methods, analyses their application to extreme events and examines their use in wave propagation and forecasting, which are pivotal towards ensuring survivability and assessing the local wave operational conditions, respectively. The use of AI has shown promising results in improving the efficiency, accuracy and reliability of wave predictions and can enable a more thorough and automated sweep of alternative design solutions, within a more reasonable timeframe and at a lower computational cost. However, the particularities of each case study still limit generalizations, although some application patterns have been identified—such as the frequent use of neural networks.</description><subject>Algorithms</subject><subject>Alternative energy</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Case studies</subject><subject>Competitiveness</subject><subject>Computer applications</subject><subject>Electricity generation</subject><subject>Energy industry</subject><subject>Energy sources</subject><subject>evolutionary algorithms</subject><subject>Flow velocity</subject><subject>Genetic algorithms</subject><subject>Learning curves</subject><subject>Mathematical optimization</subject><subject>metaheuristic algorithms</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>renewable wave energy</subject><subject>Reviews</subject><subject>Software</subject><subject>Solution space</subject><subject>Survivability</subject><subject>wave conditions prediction</subject><subject>Wave energy</subject><subject>Wave power</subject><subject>Wave propagation</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2LFDEQbUTBZdyLvyDgTZg16Urnw1szrLqwsCCKxyadVI8ZupM2yY7s_nozO35VHapSvPd44TXNa0avADR9h4EJ1nIh6LPmgmkttoxKeP7f_rK5zPlAawEwALhoHnt3NMHigqFkEgO5W4tf_KMpvj76eR-TL9-XTPp1nT06UiL5Zo5IrgOm_QPpc8acT-z3pK_sI6ajx58npSfYbvaLKUhMcH8onzHH-2TxVfNiMnPGy99z03z9cP1l92l7e_fxZtffbi2ntGxH4CMFJwUosFbWajXnTmjZuVEzQ2WnuUareDtpEEwaKZmkdBQtSEERNs3NWddFcxjWVA2lhyEaPzwdYtoPJhVvZxyscsxRp6gUHWcWVIcdN9Ayx7BTo6lab85aa4o_7jGX4VD_Eqr9oVWtllorrirq6ozamyrqwxRLMra2w8XbGHDy9d7LTlUS1Fw2zdszwaaYc8Lpr01Gh1O2w79s4Re5t5RI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Clemente, Daniel</creator><creator>Teixeira-Duarte, Felipe</creator><creator>Rosa-Santos, Paulo</creator><creator>Taveira-Pinto, Francisco</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4599-9287</orcidid><orcidid>https://orcid.org/0000-0002-3768-3314</orcidid><orcidid>https://orcid.org/0000-0003-4612-241X</orcidid></search><sort><creationdate>20230601</creationdate><title>Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource</title><author>Clemente, Daniel ; Teixeira-Duarte, Felipe ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b34b03d76383cc77772944d6975db91a075949ec842f93617a771700b623760e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alternative energy</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Case studies</topic><topic>Competitiveness</topic><topic>Computer applications</topic><topic>Electricity generation</topic><topic>Energy industry</topic><topic>Energy sources</topic><topic>evolutionary algorithms</topic><topic>Flow velocity</topic><topic>Genetic algorithms</topic><topic>Learning curves</topic><topic>Mathematical optimization</topic><topic>metaheuristic algorithms</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>renewable wave energy</topic><topic>Reviews</topic><topic>Software</topic><topic>Solution space</topic><topic>Survivability</topic><topic>wave conditions prediction</topic><topic>Wave energy</topic><topic>Wave power</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clemente, Daniel</creatorcontrib><creatorcontrib>Teixeira-Duarte, Felipe</creatorcontrib><creatorcontrib>Rosa-Santos, Paulo</creatorcontrib><creatorcontrib>Taveira-Pinto, Francisco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clemente, Daniel</au><au>Teixeira-Duarte, Felipe</au><au>Rosa-Santos, Paulo</au><au>Taveira-Pinto, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource</atitle><jtitle>Energies (Basel)</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>16</volume><issue>12</issue><spage>4660</spage><pages>4660-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The wave energy sector has not reached a sufficient level of maturity for commercial competitiveness, thus requiring further efforts towards optimizing existing technologies and making wave energy a viable alternative to bolster energy mixes. Usually, these efforts are supported by physical and numerical modelling of complex physical phenomena, which require extensive resources and time to obtain reliable, yet limited results. To complement these approaches, artificial-intelligence-based techniques (AI) are gaining increasing interest, given their computational speed and capability of searching large solution spaces and/or identifying key study patterns. Under this scope, this paper presents a comprehensive review on the use of computational systems and AI-based techniques to wave climate and energy resource studies. The paper reviews different optimization methods, analyses their application to extreme events and examines their use in wave propagation and forecasting, which are pivotal towards ensuring survivability and assessing the local wave operational conditions, respectively. The use of AI has shown promising results in improving the efficiency, accuracy and reliability of wave predictions and can enable a more thorough and automated sweep of alternative design solutions, within a more reasonable timeframe and at a lower computational cost. However, the particularities of each case study still limit generalizations, although some application patterns have been identified—such as the frequent use of neural networks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16124660</doi><orcidid>https://orcid.org/0000-0003-4599-9287</orcidid><orcidid>https://orcid.org/0000-0002-3768-3314</orcidid><orcidid>https://orcid.org/0000-0003-4612-241X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2023-06, Vol.16 (12), p.4660
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c8d1d0d8076541c385e54a321d1e58ba
source Publicly Available Content (ProQuest)
subjects Algorithms
Alternative energy
Alternative energy sources
Analysis
Artificial intelligence
Case studies
Competitiveness
Computer applications
Electricity generation
Energy industry
Energy sources
evolutionary algorithms
Flow velocity
Genetic algorithms
Learning curves
Mathematical optimization
metaheuristic algorithms
Neural networks
Neurons
Numerical models
Optimization
Optimization algorithms
renewable wave energy
Reviews
Software
Solution space
Survivability
wave conditions prediction
Wave energy
Wave power
Wave propagation
title Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20on%20Optimization%20Algorithms%20Applied%20to%20Wave%20Energy%20Assessment:%20An%20Overview%20on%20Wave%20Climate%20and%20Energy%20Resource&rft.jtitle=Energies%20(Basel)&rft.au=Clemente,%20Daniel&rft.date=2023-06-01&rft.volume=16&rft.issue=12&rft.spage=4660&rft.pages=4660-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16124660&rft_dat=%3Cgale_doaj_%3EA758282307%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-b34b03d76383cc77772944d6975db91a075949ec842f93617a771700b623760e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829799848&rft_id=info:pmid/&rft_galeid=A758282307&rfr_iscdi=true