Loading…
Theoretical and Experimental Comparison of Micro-hardness and Bulk Modulus of Orthorhombic YBa2Cu3-xZnxO Superconductor Nanoparticles Manufactured using Sol-Gel Method
In the present study, the sol-gel method was preferred for the production of superconductor materials since it is known that the sol-gel method is useful in producing nanoparticles. The Zn (Zinc) doped YBCO-123 superconductor samples (YBa2Cu3-xZnxO) were produced. The main objective in the present s...
Saved in:
Published in: | Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2020-10, Vol.24 (5), p.854-864 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, the sol-gel method was preferred for the production of superconductor materials since it is known that the sol-gel method is useful in producing nanoparticles. The Zn (Zinc) doped YBCO-123 superconductor samples (YBa2Cu3-xZnxO) were produced. The main objective in the present study was to examine the effects of both of Zn doping and sol-gel method, which was chosen as the production method, on the structural, electrical, and mechanical properties of Y-123 superconductor materials. Especially, the effects of the nanoparticles and doping on the mechanical properties of materials were discussed over the bulk modulus. It was aimed to obtain information about the mechanical properties by comparing the bulk modules calculated theoretically and experimentally. Besides that, the XRD, SEM, and resistivity measurements were performed in order to characterize the structural and electrical properties. |
---|---|
ISSN: | 2147-835X 2147-835X |
DOI: | 10.16984/saufenbilder.676028 |