Loading…

The Structure of n Harmonic Points and Generalization of Desargues’ Theorems

In this paper, we consider the relation of more than four harmonic points in a line. For this purpose, starting from the dependence of the harmonic points, Desargues’ theorems, and perspectivity, we note that it is necessary to conduct a generalization of the Desargues’ theorems for projective compl...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2021-05, Vol.9 (9), p.1018
Main Authors: Thaqi, Xhevdet, Aljimi, Ekrem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-a037b71d0259865871aa32ad271015a7aecebec61e62fc258513b0c2c99630293
container_end_page
container_issue 9
container_start_page 1018
container_title Mathematics (Basel)
container_volume 9
creator Thaqi, Xhevdet
Aljimi, Ekrem
description In this paper, we consider the relation of more than four harmonic points in a line. For this purpose, starting from the dependence of the harmonic points, Desargues’ theorems, and perspectivity, we note that it is necessary to conduct a generalization of the Desargues’ theorems for projective complete n-points, which are used to implement the definition of the generalization of harmonic points. We present new findings regarding the uniquely determined and constructed sets of H-points and their structure. The well-known fourth harmonic points represent the special case (n = 4) of the sets of H-points of rank 2, which is indicated by P42.
doi_str_mv 10.3390/math9091018
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c8f93b8ce6d2481e9cee43c01aa79eca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8f93b8ce6d2481e9cee43c01aa79eca</doaj_id><sourcerecordid>2531735686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a037b71d0259865871aa32ad271015a7aecebec61e62fc258513b0c2c99630293</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVNATPxCJIwr40cT2ERVoK1WARDlbG2fTpmriYicHOPEb_B5fgksR6l52NRrNzA4hF4xeC6HpTQPdSlPNKFNHZMA5l6mM-PHBfUqGIaxpHM2EGukBeVysMHnpfG-73mPiqqRNpuAb19Y2eXZ124UE2jKZYIseNvUHdLVrd7w7DOCXPYbvz68kqjiPTTgnJxVsAg7_9hl5fbhfjKfp_GkyG9_OUys471KgQhaSlZRnWuWZkgxAcCi5jOkzkIAWC7Q5w5xXlmcqY6Kgllutc0G5FmdkttctHazN1tcN-HfjoDa_gPNLA76r7QaNVZUWhbKYl3ykGGqLOBKWRkup0ULUutxrbb17i_90Zu1638b4hmeCSZHlKo-sqz3LeheCx-rflVGz698c9C9-APaMeF4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531735686</pqid></control><display><type>article</type><title>The Structure of n Harmonic Points and Generalization of Desargues’ Theorems</title><source>Publicly Available Content Database</source><creator>Thaqi, Xhevdet ; Aljimi, Ekrem</creator><creatorcontrib>Thaqi, Xhevdet ; Aljimi, Ekrem</creatorcontrib><description>In this paper, we consider the relation of more than four harmonic points in a line. For this purpose, starting from the dependence of the harmonic points, Desargues’ theorems, and perspectivity, we note that it is necessary to conduct a generalization of the Desargues’ theorems for projective complete n-points, which are used to implement the definition of the generalization of harmonic points. We present new findings regarding the uniquely determined and constructed sets of H-points and their structure. The well-known fourth harmonic points represent the special case (n = 4) of the sets of H-points of rank 2, which is indicated by P42.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9091018</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>complete plane n-point ; Correspondence ; Food science ; generalization of Desargues’ theorems ; Geometry ; harmonic points ; perspectivity ; projective transformations ; set of H-points rank k ; Theorems</subject><ispartof>Mathematics (Basel), 2021-05, Vol.9 (9), p.1018</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-a037b71d0259865871aa32ad271015a7aecebec61e62fc258513b0c2c99630293</cites><orcidid>0000-0003-1530-5459 ; 0000-0001-5608-4280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2531735686/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2531735686?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Thaqi, Xhevdet</creatorcontrib><creatorcontrib>Aljimi, Ekrem</creatorcontrib><title>The Structure of n Harmonic Points and Generalization of Desargues’ Theorems</title><title>Mathematics (Basel)</title><description>In this paper, we consider the relation of more than four harmonic points in a line. For this purpose, starting from the dependence of the harmonic points, Desargues’ theorems, and perspectivity, we note that it is necessary to conduct a generalization of the Desargues’ theorems for projective complete n-points, which are used to implement the definition of the generalization of harmonic points. We present new findings regarding the uniquely determined and constructed sets of H-points and their structure. The well-known fourth harmonic points represent the special case (n = 4) of the sets of H-points of rank 2, which is indicated by P42.</description><subject>complete plane n-point</subject><subject>Correspondence</subject><subject>Food science</subject><subject>generalization of Desargues’ theorems</subject><subject>Geometry</subject><subject>harmonic points</subject><subject>perspectivity</subject><subject>projective transformations</subject><subject>set of H-points rank k</subject><subject>Theorems</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVNATPxCJIwr40cT2ERVoK1WARDlbG2fTpmriYicHOPEb_B5fgksR6l52NRrNzA4hF4xeC6HpTQPdSlPNKFNHZMA5l6mM-PHBfUqGIaxpHM2EGukBeVysMHnpfG-73mPiqqRNpuAb19Y2eXZ124UE2jKZYIseNvUHdLVrd7w7DOCXPYbvz68kqjiPTTgnJxVsAg7_9hl5fbhfjKfp_GkyG9_OUys471KgQhaSlZRnWuWZkgxAcCi5jOkzkIAWC7Q5w5xXlmcqY6Kgllutc0G5FmdkttctHazN1tcN-HfjoDa_gPNLA76r7QaNVZUWhbKYl3ykGGqLOBKWRkup0ULUutxrbb17i_90Zu1638b4hmeCSZHlKo-sqz3LeheCx-rflVGz698c9C9-APaMeF4</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Thaqi, Xhevdet</creator><creator>Aljimi, Ekrem</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1530-5459</orcidid><orcidid>https://orcid.org/0000-0001-5608-4280</orcidid></search><sort><creationdate>20210501</creationdate><title>The Structure of n Harmonic Points and Generalization of Desargues’ Theorems</title><author>Thaqi, Xhevdet ; Aljimi, Ekrem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a037b71d0259865871aa32ad271015a7aecebec61e62fc258513b0c2c99630293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>complete plane n-point</topic><topic>Correspondence</topic><topic>Food science</topic><topic>generalization of Desargues’ theorems</topic><topic>Geometry</topic><topic>harmonic points</topic><topic>perspectivity</topic><topic>projective transformations</topic><topic>set of H-points rank k</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thaqi, Xhevdet</creatorcontrib><creatorcontrib>Aljimi, Ekrem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thaqi, Xhevdet</au><au>Aljimi, Ekrem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of n Harmonic Points and Generalization of Desargues’ Theorems</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>9</volume><issue>9</issue><spage>1018</spage><pages>1018-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this paper, we consider the relation of more than four harmonic points in a line. For this purpose, starting from the dependence of the harmonic points, Desargues’ theorems, and perspectivity, we note that it is necessary to conduct a generalization of the Desargues’ theorems for projective complete n-points, which are used to implement the definition of the generalization of harmonic points. We present new findings regarding the uniquely determined and constructed sets of H-points and their structure. The well-known fourth harmonic points represent the special case (n = 4) of the sets of H-points of rank 2, which is indicated by P42.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9091018</doi><orcidid>https://orcid.org/0000-0003-1530-5459</orcidid><orcidid>https://orcid.org/0000-0001-5608-4280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2021-05, Vol.9 (9), p.1018
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c8f93b8ce6d2481e9cee43c01aa79eca
source Publicly Available Content Database
subjects complete plane n-point
Correspondence
Food science
generalization of Desargues’ theorems
Geometry
harmonic points
perspectivity
projective transformations
set of H-points rank k
Theorems
title The Structure of n Harmonic Points and Generalization of Desargues’ Theorems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20n%20Harmonic%20Points%20and%20Generalization%20of%20Desargues%E2%80%99%20Theorems&rft.jtitle=Mathematics%20(Basel)&rft.au=Thaqi,%20Xhevdet&rft.date=2021-05-01&rft.volume=9&rft.issue=9&rft.spage=1018&rft.pages=1018-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9091018&rft_dat=%3Cproquest_doaj_%3E2531735686%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-a037b71d0259865871aa32ad271015a7aecebec61e62fc258513b0c2c99630293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531735686&rft_id=info:pmid/&rfr_iscdi=true