Loading…

Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles

Composites of hydroxyapatite (HAp) are widely employed in biomedical applications due to their biocompatibility, bioactivity and osteoconductivity properties. In fact, the development of industrially scalable hybrids at low cost and high efficiency has a great impact, for example, on bone tissue eng...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2017-01, Vol.7 (1), p.60
Main Authors: Turon, Pau, del Valle, Luís, Alemán, Carlos, Puiggalí, Jordi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Composites of hydroxyapatite (HAp) are widely employed in biomedical applications due to their biocompatibility, bioactivity and osteoconductivity properties. In fact, the development of industrially scalable hybrids at low cost and high efficiency has a great impact, for example, on bone tissue engineering applications and even as drug delivery systems. New nanocomposites constituted by HAp nanoparticles and synthetic or natural polymers with biodegradable and biocompatible characteristics have constantly been developed and extensive works have been published concerning their applications. The present review is mainly focused on both the capability of HAp nanoparticles to encapsulate diverse compounds as well as the preparation methods of scaffolds incorporating HAp. Attention has also been paid to the recent developments on antimicrobial scaffolds, bioactive membranes, magnetic scaffolds, in vivo imaging systems, hydrogels and coatings that made use of HAp nanoparticles.
ISSN:2076-3417
2076-3417
DOI:10.3390/app7010060