Loading…
Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions
With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabr...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (21), p.3762 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3 |
container_end_page | |
container_issue | 21 |
container_start_page | 3762 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 12 |
creator | Ng, Dickon H. L. Li, Sheng Li, Jun Huang, Jinning Cui, Yingxue Lian, Jiabiao Wang, Chuan |
description | With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs. |
doi_str_mv | 10.3390/nano12213762 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c942f59173274858b9522034fd744f08</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c942f59173274858b9522034fd744f08</doaj_id><sourcerecordid>2734709694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</originalsourceid><addsrcrecordid>eNpdkUFrFTEQgIMottTe_AELXjy4mmSSTXJQkFLtgycV1HPIZifv5bGb1GS30H_v1lekdS4zzHx8DDOEvGb0PYChH5JLmXHOQHX8GTnlVJlWGMOeP6pPyHmtB7qGYaAlvCQn0EEnpGCn5OOPORe3wyaHZhvnfVymdpNT09813_euYnOZdjEhFhyab_kamqs85cOS_Bxzqq_Ii-DGiucP-Yz8-nL58-Kq3V5_3Vx83rZeSDm3AOABOR-CNtRooAZ0QOG5kswYgax3QYjBaaM9Uw7W9ZgSqHqHQDEMcEY2R--Q3cHelDi5cmezi_ZvI5eddWWOfkTrjeBBGqaAK6Gl7o3knIIIgxIiUL26Ph1dN0s_4eAxzcWNT6RPJynu7S7fWtPJNegqePsgKPn3gnW2U6wex9ElzEu1XIHUqmOSr-ib_9BDXkpaT3VPCUVNZ8RKvTtSvuRaC4Z_yzBq799sH78Z_gChyJZn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734709694</pqid></control><display><type>article</type><title>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ng, Dickon H. L. ; Li, Sheng ; Li, Jun ; Huang, Jinning ; Cui, Yingxue ; Lian, Jiabiao ; Wang, Chuan</creator><creatorcontrib>Ng, Dickon H. L. ; Li, Sheng ; Li, Jun ; Huang, Jinning ; Cui, Yingxue ; Lian, Jiabiao ; Wang, Chuan</creatorcontrib><description>With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12213762</identifier><identifier>PMID: 36364541</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>anode materials ; Electric fields ; Electrodes ; Electrolytes ; Electronic structure ; Homojunctions ; Ion storage ; Ion transport ; Lithium ; Lithium-ion batteries ; lithium-ion storage ; Molybdenum trioxide ; Morphology ; phase engineering ; Reaction kinetics ; Rechargeable batteries ; Specific capacity ; Spectrum analysis ; Voltammetry</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3762</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</citedby><cites>FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</cites><orcidid>0000-0002-2546-1300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734709694/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734709694?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ng, Dickon H. L.</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Huang, Jinning</creatorcontrib><creatorcontrib>Cui, Yingxue</creatorcontrib><creatorcontrib>Lian, Jiabiao</creatorcontrib><creatorcontrib>Wang, Chuan</creatorcontrib><title>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</title><title>Nanomaterials (Basel, Switzerland)</title><description>With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.</description><subject>anode materials</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronic structure</subject><subject>Homojunctions</subject><subject>Ion storage</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>lithium-ion storage</subject><subject>Molybdenum trioxide</subject><subject>Morphology</subject><subject>phase engineering</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>Specific capacity</subject><subject>Spectrum analysis</subject><subject>Voltammetry</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUFrFTEQgIMottTe_AELXjy4mmSSTXJQkFLtgycV1HPIZifv5bGb1GS30H_v1lekdS4zzHx8DDOEvGb0PYChH5JLmXHOQHX8GTnlVJlWGMOeP6pPyHmtB7qGYaAlvCQn0EEnpGCn5OOPORe3wyaHZhvnfVymdpNT09813_euYnOZdjEhFhyab_kamqs85cOS_Bxzqq_Ii-DGiucP-Yz8-nL58-Kq3V5_3Vx83rZeSDm3AOABOR-CNtRooAZ0QOG5kswYgax3QYjBaaM9Uw7W9ZgSqHqHQDEMcEY2R--Q3cHelDi5cmezi_ZvI5eddWWOfkTrjeBBGqaAK6Gl7o3knIIIgxIiUL26Ph1dN0s_4eAxzcWNT6RPJynu7S7fWtPJNegqePsgKPn3gnW2U6wex9ElzEu1XIHUqmOSr-ib_9BDXkpaT3VPCUVNZ8RKvTtSvuRaC4Z_yzBq799sH78Z_gChyJZn</recordid><startdate>20221026</startdate><enddate>20221026</enddate><creator>Ng, Dickon H. L.</creator><creator>Li, Sheng</creator><creator>Li, Jun</creator><creator>Huang, Jinning</creator><creator>Cui, Yingxue</creator><creator>Lian, Jiabiao</creator><creator>Wang, Chuan</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2546-1300</orcidid></search><sort><creationdate>20221026</creationdate><title>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</title><author>Ng, Dickon H. L. ; Li, Sheng ; Li, Jun ; Huang, Jinning ; Cui, Yingxue ; Lian, Jiabiao ; Wang, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anode materials</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronic structure</topic><topic>Homojunctions</topic><topic>Ion storage</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>lithium-ion storage</topic><topic>Molybdenum trioxide</topic><topic>Morphology</topic><topic>phase engineering</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>Specific capacity</topic><topic>Spectrum analysis</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Dickon H. L.</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Huang, Jinning</creatorcontrib><creatorcontrib>Cui, Yingxue</creatorcontrib><creatorcontrib>Lian, Jiabiao</creatorcontrib><creatorcontrib>Wang, Chuan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Dickon H. L.</au><au>Li, Sheng</au><au>Li, Jun</au><au>Huang, Jinning</au><au>Cui, Yingxue</au><au>Lian, Jiabiao</au><au>Wang, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-10-26</date><risdate>2022</risdate><volume>12</volume><issue>21</issue><spage>3762</spage><pages>3762-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36364541</pmid><doi>10.3390/nano12213762</doi><orcidid>https://orcid.org/0000-0002-2546-1300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3762 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c942f59173274858b9522034fd744f08 |
source | Publicly Available Content Database; PubMed Central |
subjects | anode materials Electric fields Electrodes Electrolytes Electronic structure Homojunctions Ion storage Ion transport Lithium Lithium-ion batteries lithium-ion storage Molybdenum trioxide Morphology phase engineering Reaction kinetics Rechargeable batteries Specific capacity Spectrum analysis Voltammetry |
title | Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Storage%20of%20Lithium-Ion%20by%20Phase%20Engineered%20MoO3%20Homojunctions&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Ng,%20Dickon%20H.%20L.&rft.date=2022-10-26&rft.volume=12&rft.issue=21&rft.spage=3762&rft.pages=3762-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12213762&rft_dat=%3Cproquest_doaj_%3E2734709694%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734709694&rft_id=info:pmid/36364541&rfr_iscdi=true |