Loading…

Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions

With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabr...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (21), p.3762
Main Authors: Ng, Dickon H. L., Li, Sheng, Li, Jun, Huang, Jinning, Cui, Yingxue, Lian, Jiabiao, Wang, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3
cites cdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3
container_end_page
container_issue 21
container_start_page 3762
container_title Nanomaterials (Basel, Switzerland)
container_volume 12
creator Ng, Dickon H. L.
Li, Sheng
Li, Jun
Huang, Jinning
Cui, Yingxue
Lian, Jiabiao
Wang, Chuan
description With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.
doi_str_mv 10.3390/nano12213762
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c942f59173274858b9522034fd744f08</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c942f59173274858b9522034fd744f08</doaj_id><sourcerecordid>2734709694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</originalsourceid><addsrcrecordid>eNpdkUFrFTEQgIMottTe_AELXjy4mmSSTXJQkFLtgycV1HPIZifv5bGb1GS30H_v1lekdS4zzHx8DDOEvGb0PYChH5JLmXHOQHX8GTnlVJlWGMOeP6pPyHmtB7qGYaAlvCQn0EEnpGCn5OOPORe3wyaHZhvnfVymdpNT09813_euYnOZdjEhFhyab_kamqs85cOS_Bxzqq_Ii-DGiucP-Yz8-nL58-Kq3V5_3Vx83rZeSDm3AOABOR-CNtRooAZ0QOG5kswYgax3QYjBaaM9Uw7W9ZgSqHqHQDEMcEY2R--Q3cHelDi5cmezi_ZvI5eddWWOfkTrjeBBGqaAK6Gl7o3knIIIgxIiUL26Ph1dN0s_4eAxzcWNT6RPJynu7S7fWtPJNegqePsgKPn3gnW2U6wex9ElzEu1XIHUqmOSr-ib_9BDXkpaT3VPCUVNZ8RKvTtSvuRaC4Z_yzBq799sH78Z_gChyJZn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734709694</pqid></control><display><type>article</type><title>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ng, Dickon H. L. ; Li, Sheng ; Li, Jun ; Huang, Jinning ; Cui, Yingxue ; Lian, Jiabiao ; Wang, Chuan</creator><creatorcontrib>Ng, Dickon H. L. ; Li, Sheng ; Li, Jun ; Huang, Jinning ; Cui, Yingxue ; Lian, Jiabiao ; Wang, Chuan</creatorcontrib><description>With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12213762</identifier><identifier>PMID: 36364541</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>anode materials ; Electric fields ; Electrodes ; Electrolytes ; Electronic structure ; Homojunctions ; Ion storage ; Ion transport ; Lithium ; Lithium-ion batteries ; lithium-ion storage ; Molybdenum trioxide ; Morphology ; phase engineering ; Reaction kinetics ; Rechargeable batteries ; Specific capacity ; Spectrum analysis ; Voltammetry</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3762</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</citedby><cites>FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</cites><orcidid>0000-0002-2546-1300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734709694/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734709694?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ng, Dickon H. L.</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Huang, Jinning</creatorcontrib><creatorcontrib>Cui, Yingxue</creatorcontrib><creatorcontrib>Lian, Jiabiao</creatorcontrib><creatorcontrib>Wang, Chuan</creatorcontrib><title>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</title><title>Nanomaterials (Basel, Switzerland)</title><description>With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.</description><subject>anode materials</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronic structure</subject><subject>Homojunctions</subject><subject>Ion storage</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>lithium-ion storage</subject><subject>Molybdenum trioxide</subject><subject>Morphology</subject><subject>phase engineering</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>Specific capacity</subject><subject>Spectrum analysis</subject><subject>Voltammetry</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUFrFTEQgIMottTe_AELXjy4mmSSTXJQkFLtgycV1HPIZifv5bGb1GS30H_v1lekdS4zzHx8DDOEvGb0PYChH5JLmXHOQHX8GTnlVJlWGMOeP6pPyHmtB7qGYaAlvCQn0EEnpGCn5OOPORe3wyaHZhvnfVymdpNT09813_euYnOZdjEhFhyab_kamqs85cOS_Bxzqq_Ii-DGiucP-Yz8-nL58-Kq3V5_3Vx83rZeSDm3AOABOR-CNtRooAZ0QOG5kswYgax3QYjBaaM9Uw7W9ZgSqHqHQDEMcEY2R--Q3cHelDi5cmezi_ZvI5eddWWOfkTrjeBBGqaAK6Gl7o3knIIIgxIiUL26Ph1dN0s_4eAxzcWNT6RPJynu7S7fWtPJNegqePsgKPn3gnW2U6wex9ElzEu1XIHUqmOSr-ib_9BDXkpaT3VPCUVNZ8RKvTtSvuRaC4Z_yzBq799sH78Z_gChyJZn</recordid><startdate>20221026</startdate><enddate>20221026</enddate><creator>Ng, Dickon H. L.</creator><creator>Li, Sheng</creator><creator>Li, Jun</creator><creator>Huang, Jinning</creator><creator>Cui, Yingxue</creator><creator>Lian, Jiabiao</creator><creator>Wang, Chuan</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2546-1300</orcidid></search><sort><creationdate>20221026</creationdate><title>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</title><author>Ng, Dickon H. L. ; Li, Sheng ; Li, Jun ; Huang, Jinning ; Cui, Yingxue ; Lian, Jiabiao ; Wang, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anode materials</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronic structure</topic><topic>Homojunctions</topic><topic>Ion storage</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>lithium-ion storage</topic><topic>Molybdenum trioxide</topic><topic>Morphology</topic><topic>phase engineering</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>Specific capacity</topic><topic>Spectrum analysis</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Dickon H. L.</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Huang, Jinning</creatorcontrib><creatorcontrib>Cui, Yingxue</creatorcontrib><creatorcontrib>Lian, Jiabiao</creatorcontrib><creatorcontrib>Wang, Chuan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Dickon H. L.</au><au>Li, Sheng</au><au>Li, Jun</au><au>Huang, Jinning</au><au>Cui, Yingxue</au><au>Lian, Jiabiao</au><au>Wang, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-10-26</date><risdate>2022</risdate><volume>12</volume><issue>21</issue><spage>3762</spage><pages>3762-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g−1 at 0.1 A g−1) and rate performance (406 mAh g−1 at 5.0 A g−1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36364541</pmid><doi>10.3390/nano12213762</doi><orcidid>https://orcid.org/0000-0002-2546-1300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3762
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c942f59173274858b9522034fd744f08
source Publicly Available Content Database; PubMed Central
subjects anode materials
Electric fields
Electrodes
Electrolytes
Electronic structure
Homojunctions
Ion storage
Ion transport
Lithium
Lithium-ion batteries
lithium-ion storage
Molybdenum trioxide
Morphology
phase engineering
Reaction kinetics
Rechargeable batteries
Specific capacity
Spectrum analysis
Voltammetry
title Storage of Lithium-Ion by Phase Engineered MoO3 Homojunctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Storage%20of%20Lithium-Ion%20by%20Phase%20Engineered%20MoO3%20Homojunctions&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Ng,%20Dickon%20H.%20L.&rft.date=2022-10-26&rft.volume=12&rft.issue=21&rft.spage=3762&rft.pages=3762-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12213762&rft_dat=%3Cproquest_doaj_%3E2734709694%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-333c3e22df8909830938fe4c2751994e1baf44da898c17a3363174e7bae30efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734709694&rft_id=info:pmid/36364541&rfr_iscdi=true