Loading…

Applications of Optically Controlled Gold Nanostructures in Biomedical Engineering

Since their inception, optical tweezers have proven to be a useful tool for improving human understanding of the microscopic world with wide-ranging applications across science. In recent years, they have found many particularly appealing applications in the field of biomedical engineering which har...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology 2021-01, Vol.8, p.602021
Main Authors: Phummirat, Pisrut, Mann, Nicholas, Preece, Daryl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since their inception, optical tweezers have proven to be a useful tool for improving human understanding of the microscopic world with wide-ranging applications across science. In recent years, they have found many particularly appealing applications in the field of biomedical engineering which harnesses the knowledge and skills in engineering to tackle problems in biology and medicine. Notably, metallic nanostructures like gold nanoparticles have proven to be an excellent tool for OT-based micromanipulation due to their large polarizability and relatively low cytotoxicity. In this article, we review the progress made in the application of optically trapped gold nanomaterials to problems in bioengineering. After an introduction to the basic methods of optical trapping, we give an overview of potential applications to bioengineering specifically: nano/biomaterials, microfluidics, drug delivery, biosensing, biophotonics and imaging, and mechanobiology/single-molecule biophysics. We highlight the recent research progress, discuss challenges, and provide possible future directions in this field.
ISSN:2296-4185
2296-4185
DOI:10.3389/fbioe.2020.602021