Loading…

Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease

Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we appli...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecules (Basel, Switzerland) Switzerland), 2024-01, Vol.14 (2), p.164
Main Authors: Lucena-Padros, Helena, Bravo-Gil, Nereida, Tous, Cristina, Rojano, Elena, Seoane-Zonjic, Pedro, Fernández, Raquel María, Ranea, Juan A G, Antiñolo, Guillermo, Borrego, Salud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-a05b2b359e5495d42dbf8e4ab83cb1aca37f4cd13147a64b6737b5aa708fdbd03
cites cdi_FETCH-LOGICAL-c490t-a05b2b359e5495d42dbf8e4ab83cb1aca37f4cd13147a64b6737b5aa708fdbd03
container_end_page
container_issue 2
container_start_page 164
container_title Biomolecules (Basel, Switzerland)
container_volume 14
creator Lucena-Padros, Helena
Bravo-Gil, Nereida
Tous, Cristina
Rojano, Elena
Seoane-Zonjic, Pedro
Fernández, Raquel María
Ranea, Juan A G
Antiñolo, Guillermo
Borrego, Salud
description Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.
doi_str_mv 10.3390/biom14020164
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c974284fbc0d468180529d8232d8d2bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784036922</galeid><doaj_id>oai_doaj_org_article_c974284fbc0d468180529d8232d8d2bc</doaj_id><sourcerecordid>A784036922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-a05b2b359e5495d42dbf8e4ab83cb1aca37f4cd13147a64b6737b5aa708fdbd03</originalsourceid><addsrcrecordid>eNptkstv1DAQxiMEolXbG2cUiQsH0vqVxD5uX3Sl0nIAiZs1fmTxksRb2wH639fpltIibEu2Rr_vG3s8RfEGo0NKBTpSzg-YIYJww14Uu4RgXpGWfnv55LxTHMS4RnnwvAh9XexQTkXLEN4t0rHzbux8GCA5HcvPwRqnk_NjmYPllU2_fPhRHUO0plyOya5CBn_a8tPUJ1ddD7Po7Pcm2Bhn0SkkKBcj9LfRxdKN5YULUX-PmzCNq_LURZud9otXHfTRHjzse8XX87MvJxfV5fXH5cnistJMoFQBqhVRtBa2ZqI2jBjVcctAcaoVBg207Zg2mGLWQsNU09JW1QAt4p1RBtG9Yrn1NR7WchPcAOFWenDyPuDDSkLIz-6t1LkehLNOaWRYwzFHNREmV4sYbojS2ev91msT_M1kY5KDi9r2PYzWT1ESQQkiRKA57bt_0LWfQq7JPYVqVGMm_lIryPnnP0gB9GwqFy1niDaCkEwd_ofK09hcej_azuX4M8GHrUAHH2Ow3eO7MZJzz8inPZPxtw93ndRgzSP8p0PoHVbPu3k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930505149</pqid></control><display><type>article</type><title>Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Lucena-Padros, Helena ; Bravo-Gil, Nereida ; Tous, Cristina ; Rojano, Elena ; Seoane-Zonjic, Pedro ; Fernández, Raquel María ; Ranea, Juan A G ; Antiñolo, Guillermo ; Borrego, Salud</creator><creatorcontrib>Lucena-Padros, Helena ; Bravo-Gil, Nereida ; Tous, Cristina ; Rojano, Elena ; Seoane-Zonjic, Pedro ; Fernández, Raquel María ; Ranea, Juan A G ; Antiñolo, Guillermo ; Borrego, Salud</creatorcontrib><description>Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom14020164</identifier><identifier>PMID: 38397401</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Bioinformatics ; Biomarkers ; Causes and theories of causation ; Colon ; Computational Biology ; Disease ; Diseases ; enteric neuropathy ; Ganglia ; Genes ; Genetic aspects ; Hirschsprung Disease - genetics ; Hirschsprung's disease ; Humans ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Multiomics ; networks analysis ; omics expression data ; Online data bases ; Physiological aspects ; Proteins ; system biology</subject><ispartof>Biomolecules (Basel, Switzerland), 2024-01, Vol.14 (2), p.164</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-a05b2b359e5495d42dbf8e4ab83cb1aca37f4cd13147a64b6737b5aa708fdbd03</citedby><cites>FETCH-LOGICAL-c490t-a05b2b359e5495d42dbf8e4ab83cb1aca37f4cd13147a64b6737b5aa708fdbd03</cites><orcidid>0000-0002-3020-1415 ; 0000-0002-2678-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2930505149/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2930505149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38397401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucena-Padros, Helena</creatorcontrib><creatorcontrib>Bravo-Gil, Nereida</creatorcontrib><creatorcontrib>Tous, Cristina</creatorcontrib><creatorcontrib>Rojano, Elena</creatorcontrib><creatorcontrib>Seoane-Zonjic, Pedro</creatorcontrib><creatorcontrib>Fernández, Raquel María</creatorcontrib><creatorcontrib>Ranea, Juan A G</creatorcontrib><creatorcontrib>Antiñolo, Guillermo</creatorcontrib><creatorcontrib>Borrego, Salud</creatorcontrib><title>Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>Biomolecules</addtitle><description>Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.</description><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Causes and theories of causation</subject><subject>Colon</subject><subject>Computational Biology</subject><subject>Disease</subject><subject>Diseases</subject><subject>enteric neuropathy</subject><subject>Ganglia</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Hirschsprung Disease - genetics</subject><subject>Hirschsprung's disease</subject><subject>Humans</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Multiomics</subject><subject>networks analysis</subject><subject>omics expression data</subject><subject>Online data bases</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>system biology</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstv1DAQxiMEolXbG2cUiQsH0vqVxD5uX3Sl0nIAiZs1fmTxksRb2wH639fpltIibEu2Rr_vG3s8RfEGo0NKBTpSzg-YIYJww14Uu4RgXpGWfnv55LxTHMS4RnnwvAh9XexQTkXLEN4t0rHzbux8GCA5HcvPwRqnk_NjmYPllU2_fPhRHUO0plyOya5CBn_a8tPUJ1ddD7Po7Pcm2Bhn0SkkKBcj9LfRxdKN5YULUX-PmzCNq_LURZud9otXHfTRHjzse8XX87MvJxfV5fXH5cnistJMoFQBqhVRtBa2ZqI2jBjVcctAcaoVBg207Zg2mGLWQsNU09JW1QAt4p1RBtG9Yrn1NR7WchPcAOFWenDyPuDDSkLIz-6t1LkehLNOaWRYwzFHNREmV4sYbojS2ev91msT_M1kY5KDi9r2PYzWT1ESQQkiRKA57bt_0LWfQq7JPYVqVGMm_lIryPnnP0gB9GwqFy1niDaCkEwd_ofK09hcej_azuX4M8GHrUAHH2Ow3eO7MZJzz8inPZPxtw93ndRgzSP8p0PoHVbPu3k</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lucena-Padros, Helena</creator><creator>Bravo-Gil, Nereida</creator><creator>Tous, Cristina</creator><creator>Rojano, Elena</creator><creator>Seoane-Zonjic, Pedro</creator><creator>Fernández, Raquel María</creator><creator>Ranea, Juan A G</creator><creator>Antiñolo, Guillermo</creator><creator>Borrego, Salud</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3020-1415</orcidid><orcidid>https://orcid.org/0000-0002-2678-710X</orcidid></search><sort><creationdate>20240101</creationdate><title>Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease</title><author>Lucena-Padros, Helena ; Bravo-Gil, Nereida ; Tous, Cristina ; Rojano, Elena ; Seoane-Zonjic, Pedro ; Fernández, Raquel María ; Ranea, Juan A G ; Antiñolo, Guillermo ; Borrego, Salud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-a05b2b359e5495d42dbf8e4ab83cb1aca37f4cd13147a64b6737b5aa708fdbd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Causes and theories of causation</topic><topic>Colon</topic><topic>Computational Biology</topic><topic>Disease</topic><topic>Diseases</topic><topic>enteric neuropathy</topic><topic>Ganglia</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Hirschsprung Disease - genetics</topic><topic>Hirschsprung's disease</topic><topic>Humans</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Multiomics</topic><topic>networks analysis</topic><topic>omics expression data</topic><topic>Online data bases</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>system biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucena-Padros, Helena</creatorcontrib><creatorcontrib>Bravo-Gil, Nereida</creatorcontrib><creatorcontrib>Tous, Cristina</creatorcontrib><creatorcontrib>Rojano, Elena</creatorcontrib><creatorcontrib>Seoane-Zonjic, Pedro</creatorcontrib><creatorcontrib>Fernández, Raquel María</creatorcontrib><creatorcontrib>Ranea, Juan A G</creatorcontrib><creatorcontrib>Antiñolo, Guillermo</creatorcontrib><creatorcontrib>Borrego, Salud</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucena-Padros, Helena</au><au>Bravo-Gil, Nereida</au><au>Tous, Cristina</au><au>Rojano, Elena</au><au>Seoane-Zonjic, Pedro</au><au>Fernández, Raquel María</au><au>Ranea, Juan A G</au><au>Antiñolo, Guillermo</au><au>Borrego, Salud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><addtitle>Biomolecules</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>164</spage><pages>164-</pages><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38397401</pmid><doi>10.3390/biom14020164</doi><orcidid>https://orcid.org/0000-0002-3020-1415</orcidid><orcidid>https://orcid.org/0000-0002-2678-710X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2218-273X
ispartof Biomolecules (Basel, Switzerland), 2024-01, Vol.14 (2), p.164
issn 2218-273X
2218-273X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c974284fbc0d468180529d8232d8d2bc
source Open Access: PubMed Central; ProQuest - Publicly Available Content Database
subjects Analysis
Bioinformatics
Biomarkers
Causes and theories of causation
Colon
Computational Biology
Disease
Diseases
enteric neuropathy
Ganglia
Genes
Genetic aspects
Hirschsprung Disease - genetics
Hirschsprung's disease
Humans
MicroRNAs
MicroRNAs - genetics
miRNA
Multiomics
networks analysis
omics expression data
Online data bases
Physiological aspects
Proteins
system biology
title Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatics%20Prediction%20for%20Network-Based%20Integrative%20Multi-Omics%20Expression%20Data%20Analysis%20in%20Hirschsprung%20Disease&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Lucena-Padros,%20Helena&rft.date=2024-01-01&rft.volume=14&rft.issue=2&rft.spage=164&rft.pages=164-&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom14020164&rft_dat=%3Cgale_doaj_%3EA784036922%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-a05b2b359e5495d42dbf8e4ab83cb1aca37f4cd13147a64b6737b5aa708fdbd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930505149&rft_id=info:pmid/38397401&rft_galeid=A784036922&rfr_iscdi=true