Loading…

Identification of mRNA vaccines and conserved ferroptosis related immune landscape for individual precision treatment in bladder cancer

Background The aim of this study was to identify the ferroptosis induced tumor microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine development and selecting suitable patients for precision treatment. Methods Gene expression profiles and clinical information of 1216 BCa patient...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data 2022-07, Vol.9 (1), p.88-88, Article 88
Main Authors: Gui, Cheng-Peng, Li, Jia-Ying, Fu, Liang-Min, Luo, Cheng-Gong, Zhang, Chi, Tang, Yi-Ming, Zhang, Li-zhen, Shu, Guan-nan, Wu, Rong-Pei, Luo, Jun-Hang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c618t-a6f22d3fb8cc121f84d341468ae2c93fbceba530917cfdf3945d46e055413de83
cites cdi_FETCH-LOGICAL-c618t-a6f22d3fb8cc121f84d341468ae2c93fbceba530917cfdf3945d46e055413de83
container_end_page 88
container_issue 1
container_start_page 88
container_title Journal of big data
container_volume 9
creator Gui, Cheng-Peng
Li, Jia-Ying
Fu, Liang-Min
Luo, Cheng-Gong
Zhang, Chi
Tang, Yi-Ming
Zhang, Li-zhen
Shu, Guan-nan
Wu, Rong-Pei
Luo, Jun-Hang
description Background The aim of this study was to identify the ferroptosis induced tumor microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine development and selecting suitable patients for precision treatment. Methods Gene expression profiles and clinical information of 1216 BCa patients were extracted from TCGA-BLCA, three GEO databases and IMvigor210 cohort. We comprehensively established the FeME landscape of 1216 BCa samples based on 290 ferroptosis related genes (FRGs), and systematically correlated these regulation patterns with TME cell-infiltrating characteristics. Besides, we identified the patients’ ferroptosis risk index (FRI) to predict the prognosis of BCa for precise treatment. Results Six over-expressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in BCa. Furthermore, we demonstrated the evaluation of FeME within individual tumors could predict stages of tumor inflammation, subtypes, genetic variation, and patient prognosis. Then, 5-lncRNA signature was mined to produce the FRI. Low FRI was also linked to increased mutation load, better prognosis and enhanced response to anti-PD-L1 immunotherapy. Besides, an immunotherapy cohort confirmed patients with lower FRI demonstrated significant therapeutic advantages and clinical benefits. Conclusions TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are potent antigens for developing anti-BCa mRNA vaccine. Establishment of FRI will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies and selecting appropriate patients for tumor vaccine therapy.
doi_str_mv 10.1186/s40537-022-00641-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c978d4fe03c14fbaa01e839deb5c387c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c978d4fe03c14fbaa01e839deb5c387c</doaj_id><sourcerecordid>2688522416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-a6f22d3fb8cc121f84d341468ae2c93fbceba530917cfdf3945d46e055413de83</originalsourceid><addsrcrecordid>eNp9ks2OFCEUhStG40zGeQFXJG7clHKBoqmNyWTiTycTTYyuCQWXlk4VtFDVifMCvrb01EQdF64g957zAZfTNM-BvgJQ8nURtOObljLWUioFtLePmnMGvWwBoHv81_6suSxlTykFXj1SPG3OeKdA8b47b35uHcY5-GDNHFIkyZPp88crcjTWhoiFmOiITbFgPqIjHnNOhzmVUEjG0cy1FqZpiUjGqizWHJD4lEmILhyDW8xIDhltKCf4nNHMUz2vtskwGucwE2uixfyseeLNWPDyfr1ovr57--X6Q3vz6f32-uqmtRLU3BrpGXPcD8paYOCVcFyAkMogs32tWxxMx2kPG-ud573onJBIu04Ad6j4RbNduS6ZvT7kMJn8QycT9F0h5Z02eQ52RG37jXLCI-UWhB-MoVABvcOhs1xtbGW9WVmHZZjQ2fqwbMYH0IedGL7pXTrqnkkADhXw8h6Q0_cFy6ynUCyOdZSYlqKZVKpjTICs0hf_SPdpybGO6qSq38l7flKxVWVzKiWj_30ZoPoUG73GRtfY6LvY6Ntq4qupVHHcYf6D_o_rF-y5yA4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685813936</pqid></control><display><type>article</type><title>Identification of mRNA vaccines and conserved ferroptosis related immune landscape for individual precision treatment in bladder cancer</title><source>Publicly Available Content Database</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Gui, Cheng-Peng ; Li, Jia-Ying ; Fu, Liang-Min ; Luo, Cheng-Gong ; Zhang, Chi ; Tang, Yi-Ming ; Zhang, Li-zhen ; Shu, Guan-nan ; Wu, Rong-Pei ; Luo, Jun-Hang</creator><creatorcontrib>Gui, Cheng-Peng ; Li, Jia-Ying ; Fu, Liang-Min ; Luo, Cheng-Gong ; Zhang, Chi ; Tang, Yi-Ming ; Zhang, Li-zhen ; Shu, Guan-nan ; Wu, Rong-Pei ; Luo, Jun-Hang</creatorcontrib><description>Background The aim of this study was to identify the ferroptosis induced tumor microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine development and selecting suitable patients for precision treatment. Methods Gene expression profiles and clinical information of 1216 BCa patients were extracted from TCGA-BLCA, three GEO databases and IMvigor210 cohort. We comprehensively established the FeME landscape of 1216 BCa samples based on 290 ferroptosis related genes (FRGs), and systematically correlated these regulation patterns with TME cell-infiltrating characteristics. Besides, we identified the patients’ ferroptosis risk index (FRI) to predict the prognosis of BCa for precise treatment. Results Six over-expressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in BCa. Furthermore, we demonstrated the evaluation of FeME within individual tumors could predict stages of tumor inflammation, subtypes, genetic variation, and patient prognosis. Then, 5-lncRNA signature was mined to produce the FRI. Low FRI was also linked to increased mutation load, better prognosis and enhanced response to anti-PD-L1 immunotherapy. Besides, an immunotherapy cohort confirmed patients with lower FRI demonstrated significant therapeutic advantages and clinical benefits. Conclusions TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are potent antigens for developing anti-BCa mRNA vaccine. Establishment of FRI will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies and selecting appropriate patients for tumor vaccine therapy.</description><identifier>ISSN: 2196-1115</identifier><identifier>EISSN: 2196-1115</identifier><identifier>DOI: 10.1186/s40537-022-00641-z</identifier><identifier>PMID: 35818395</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Antigens ; Big Data ; Bladder ; Bladder cancer ; Cancer ; Cognition ; Communications Engineering ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Ferroptosis ; Gene expression ; Immunotherapy ; Infiltration ; Information Storage and Retrieval ; Mathematical Applications in Computer Science ; mRNA vaccine ; mRNA vaccines ; Mutation ; Networks ; Precise treatment ; Prognosis ; Tumor immune microenvironment ; Tumors ; Vaccines</subject><ispartof>Journal of big data, 2022-07, Vol.9 (1), p.88-88, Article 88</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-a6f22d3fb8cc121f84d341468ae2c93fbceba530917cfdf3945d46e055413de83</citedby><cites>FETCH-LOGICAL-c618t-a6f22d3fb8cc121f84d341468ae2c93fbceba530917cfdf3945d46e055413de83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2685813936?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11679,21385,25744,27915,27916,33602,33603,36051,36052,37003,37004,43724,44354,44581</link.rule.ids></links><search><creatorcontrib>Gui, Cheng-Peng</creatorcontrib><creatorcontrib>Li, Jia-Ying</creatorcontrib><creatorcontrib>Fu, Liang-Min</creatorcontrib><creatorcontrib>Luo, Cheng-Gong</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Tang, Yi-Ming</creatorcontrib><creatorcontrib>Zhang, Li-zhen</creatorcontrib><creatorcontrib>Shu, Guan-nan</creatorcontrib><creatorcontrib>Wu, Rong-Pei</creatorcontrib><creatorcontrib>Luo, Jun-Hang</creatorcontrib><title>Identification of mRNA vaccines and conserved ferroptosis related immune landscape for individual precision treatment in bladder cancer</title><title>Journal of big data</title><addtitle>J Big Data</addtitle><description>Background The aim of this study was to identify the ferroptosis induced tumor microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine development and selecting suitable patients for precision treatment. Methods Gene expression profiles and clinical information of 1216 BCa patients were extracted from TCGA-BLCA, three GEO databases and IMvigor210 cohort. We comprehensively established the FeME landscape of 1216 BCa samples based on 290 ferroptosis related genes (FRGs), and systematically correlated these regulation patterns with TME cell-infiltrating characteristics. Besides, we identified the patients’ ferroptosis risk index (FRI) to predict the prognosis of BCa for precise treatment. Results Six over-expressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in BCa. Furthermore, we demonstrated the evaluation of FeME within individual tumors could predict stages of tumor inflammation, subtypes, genetic variation, and patient prognosis. Then, 5-lncRNA signature was mined to produce the FRI. Low FRI was also linked to increased mutation load, better prognosis and enhanced response to anti-PD-L1 immunotherapy. Besides, an immunotherapy cohort confirmed patients with lower FRI demonstrated significant therapeutic advantages and clinical benefits. Conclusions TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are potent antigens for developing anti-BCa mRNA vaccine. Establishment of FRI will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies and selecting appropriate patients for tumor vaccine therapy.</description><subject>Antigens</subject><subject>Big Data</subject><subject>Bladder</subject><subject>Bladder cancer</subject><subject>Cancer</subject><subject>Cognition</subject><subject>Communications Engineering</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Ferroptosis</subject><subject>Gene expression</subject><subject>Immunotherapy</subject><subject>Infiltration</subject><subject>Information Storage and Retrieval</subject><subject>Mathematical Applications in Computer Science</subject><subject>mRNA vaccine</subject><subject>mRNA vaccines</subject><subject>Mutation</subject><subject>Networks</subject><subject>Precise treatment</subject><subject>Prognosis</subject><subject>Tumor immune microenvironment</subject><subject>Tumors</subject><subject>Vaccines</subject><issn>2196-1115</issn><issn>2196-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks2OFCEUhStG40zGeQFXJG7clHKBoqmNyWTiTycTTYyuCQWXlk4VtFDVifMCvrb01EQdF64g957zAZfTNM-BvgJQ8nURtOObljLWUioFtLePmnMGvWwBoHv81_6suSxlTykFXj1SPG3OeKdA8b47b35uHcY5-GDNHFIkyZPp88crcjTWhoiFmOiITbFgPqIjHnNOhzmVUEjG0cy1FqZpiUjGqizWHJD4lEmILhyDW8xIDhltKCf4nNHMUz2vtskwGucwE2uixfyseeLNWPDyfr1ovr57--X6Q3vz6f32-uqmtRLU3BrpGXPcD8paYOCVcFyAkMogs32tWxxMx2kPG-ud573onJBIu04Ad6j4RbNduS6ZvT7kMJn8QycT9F0h5Z02eQ52RG37jXLCI-UWhB-MoVABvcOhs1xtbGW9WVmHZZjQ2fqwbMYH0IedGL7pXTrqnkkADhXw8h6Q0_cFy6ynUCyOdZSYlqKZVKpjTICs0hf_SPdpybGO6qSq38l7flKxVWVzKiWj_30ZoPoUG73GRtfY6LvY6Ntq4qupVHHcYf6D_o_rF-y5yA4</recordid><startdate>20220707</startdate><enddate>20220707</enddate><creator>Gui, Cheng-Peng</creator><creator>Li, Jia-Ying</creator><creator>Fu, Liang-Min</creator><creator>Luo, Cheng-Gong</creator><creator>Zhang, Chi</creator><creator>Tang, Yi-Ming</creator><creator>Zhang, Li-zhen</creator><creator>Shu, Guan-nan</creator><creator>Wu, Rong-Pei</creator><creator>Luo, Jun-Hang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220707</creationdate><title>Identification of mRNA vaccines and conserved ferroptosis related immune landscape for individual precision treatment in bladder cancer</title><author>Gui, Cheng-Peng ; Li, Jia-Ying ; Fu, Liang-Min ; Luo, Cheng-Gong ; Zhang, Chi ; Tang, Yi-Ming ; Zhang, Li-zhen ; Shu, Guan-nan ; Wu, Rong-Pei ; Luo, Jun-Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-a6f22d3fb8cc121f84d341468ae2c93fbceba530917cfdf3945d46e055413de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antigens</topic><topic>Big Data</topic><topic>Bladder</topic><topic>Bladder cancer</topic><topic>Cancer</topic><topic>Cognition</topic><topic>Communications Engineering</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Ferroptosis</topic><topic>Gene expression</topic><topic>Immunotherapy</topic><topic>Infiltration</topic><topic>Information Storage and Retrieval</topic><topic>Mathematical Applications in Computer Science</topic><topic>mRNA vaccine</topic><topic>mRNA vaccines</topic><topic>Mutation</topic><topic>Networks</topic><topic>Precise treatment</topic><topic>Prognosis</topic><topic>Tumor immune microenvironment</topic><topic>Tumors</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Cheng-Peng</creatorcontrib><creatorcontrib>Li, Jia-Ying</creatorcontrib><creatorcontrib>Fu, Liang-Min</creatorcontrib><creatorcontrib>Luo, Cheng-Gong</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Tang, Yi-Ming</creatorcontrib><creatorcontrib>Zhang, Li-zhen</creatorcontrib><creatorcontrib>Shu, Guan-nan</creatorcontrib><creatorcontrib>Wu, Rong-Pei</creatorcontrib><creatorcontrib>Luo, Jun-Hang</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Cheng-Peng</au><au>Li, Jia-Ying</au><au>Fu, Liang-Min</au><au>Luo, Cheng-Gong</au><au>Zhang, Chi</au><au>Tang, Yi-Ming</au><au>Zhang, Li-zhen</au><au>Shu, Guan-nan</au><au>Wu, Rong-Pei</au><au>Luo, Jun-Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of mRNA vaccines and conserved ferroptosis related immune landscape for individual precision treatment in bladder cancer</atitle><jtitle>Journal of big data</jtitle><stitle>J Big Data</stitle><date>2022-07-07</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>88</spage><epage>88</epage><pages>88-88</pages><artnum>88</artnum><issn>2196-1115</issn><eissn>2196-1115</eissn><abstract>Background The aim of this study was to identify the ferroptosis induced tumor microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine development and selecting suitable patients for precision treatment. Methods Gene expression profiles and clinical information of 1216 BCa patients were extracted from TCGA-BLCA, three GEO databases and IMvigor210 cohort. We comprehensively established the FeME landscape of 1216 BCa samples based on 290 ferroptosis related genes (FRGs), and systematically correlated these regulation patterns with TME cell-infiltrating characteristics. Besides, we identified the patients’ ferroptosis risk index (FRI) to predict the prognosis of BCa for precise treatment. Results Six over-expressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in BCa. Furthermore, we demonstrated the evaluation of FeME within individual tumors could predict stages of tumor inflammation, subtypes, genetic variation, and patient prognosis. Then, 5-lncRNA signature was mined to produce the FRI. Low FRI was also linked to increased mutation load, better prognosis and enhanced response to anti-PD-L1 immunotherapy. Besides, an immunotherapy cohort confirmed patients with lower FRI demonstrated significant therapeutic advantages and clinical benefits. Conclusions TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are potent antigens for developing anti-BCa mRNA vaccine. Establishment of FRI will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies and selecting appropriate patients for tumor vaccine therapy.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35818395</pmid><doi>10.1186/s40537-022-00641-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-1115
ispartof Journal of big data, 2022-07, Vol.9 (1), p.88-88, Article 88
issn 2196-1115
2196-1115
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c978d4fe03c14fbaa01e839deb5c387c
source Publicly Available Content Database; Social Science Premium Collection; ABI/INFORM Global; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Antigens
Big Data
Bladder
Bladder cancer
Cancer
Cognition
Communications Engineering
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Database Management
Ferroptosis
Gene expression
Immunotherapy
Infiltration
Information Storage and Retrieval
Mathematical Applications in Computer Science
mRNA vaccine
mRNA vaccines
Mutation
Networks
Precise treatment
Prognosis
Tumor immune microenvironment
Tumors
Vaccines
title Identification of mRNA vaccines and conserved ferroptosis related immune landscape for individual precision treatment in bladder cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20mRNA%20vaccines%20and%20conserved%20ferroptosis%20related%20immune%20landscape%20for%20individual%20precision%20treatment%20in%20bladder%20cancer&rft.jtitle=Journal%20of%20big%20data&rft.au=Gui,%20Cheng-Peng&rft.date=2022-07-07&rft.volume=9&rft.issue=1&rft.spage=88&rft.epage=88&rft.pages=88-88&rft.artnum=88&rft.issn=2196-1115&rft.eissn=2196-1115&rft_id=info:doi/10.1186/s40537-022-00641-z&rft_dat=%3Cproquest_doaj_%3E2688522416%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-a6f22d3fb8cc121f84d341468ae2c93fbceba530917cfdf3945d46e055413de83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685813936&rft_id=info:pmid/35818395&rfr_iscdi=true