Loading…
Predicting the surface roughness of an electrodeposited copper film using a machine learning technique
Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions require...
Saved in:
Published in: | Science and technology of advanced materials. Methods 2024-12, Vol.4 (1) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Science and technology of advanced materials. Methods |
container_volume | 4 |
creator | Tamura, Ryo Inaba, Ryuichi Watanabe, Mami Mori, Yutaro Urushihara, Makoto Yamaguchi, Kenji Matsuda, Shoichi |
description | Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance. |
doi_str_mv | 10.1080/27660400.2024.2416889 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a</doaj_id><sourcerecordid>oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063</originalsourceid><addsrcrecordid>eNpN0E1OwzAQBeAIgURVegQkXyBl4ji2s0QVP5UqwQLW1sSZNK7SuNjJgtvTtAWxmtEbzbd4SXKfwTIDDQ9cSQkCYMmBiyUXmdS6vEpmU55Oh-t_-22yiHEHAFyrnOcwS5r3QLWzg-u3bGiJxTE0aIkFP27bnmJkvmHYM-rIDsHXdPDRDVQz6w8HCqxx3Z6NcXpHtkfbup5YRxj6k0i27d3XSHfJTYNdpMVlzpPP56eP1Wu6eXtZrx43qeVaD2lWa9BlLUBTgVIJzMqsKklJlKKouBQoylo1eak5B5VJyUErtLUqikJwkPk8WZ_d2uPOHILbY_g2Hp05BT5sDYbB2Y6MLRXhkcAGrCCr8UhWFVgoeS4Fx6NVnC0bfIyBmj8vAzN1b367N1P35tJ9_gPybnaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</title><source>Taylor & Francis</source><creator>Tamura, Ryo ; Inaba, Ryuichi ; Watanabe, Mami ; Mori, Yutaro ; Urushihara, Makoto ; Yamaguchi, Kenji ; Matsuda, Shoichi</creator><creatorcontrib>Tamura, Ryo ; Inaba, Ryuichi ; Watanabe, Mami ; Mori, Yutaro ; Urushihara, Makoto ; Yamaguchi, Kenji ; Matsuda, Shoichi</creatorcontrib><description>Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance.</description><identifier>ISSN: 2766-0400</identifier><identifier>EISSN: 2766-0400</identifier><identifier>DOI: 10.1080/27660400.2024.2416889</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>copper film ; electrochemistry ; Electrodeposition ; machine learning ; surface roughness</subject><ispartof>Science and technology of advanced materials. Methods, 2024-12, Vol.4 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tamura, Ryo</creatorcontrib><creatorcontrib>Inaba, Ryuichi</creatorcontrib><creatorcontrib>Watanabe, Mami</creatorcontrib><creatorcontrib>Mori, Yutaro</creatorcontrib><creatorcontrib>Urushihara, Makoto</creatorcontrib><creatorcontrib>Yamaguchi, Kenji</creatorcontrib><creatorcontrib>Matsuda, Shoichi</creatorcontrib><title>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</title><title>Science and technology of advanced materials. Methods</title><description>Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance.</description><subject>copper film</subject><subject>electrochemistry</subject><subject>Electrodeposition</subject><subject>machine learning</subject><subject>surface roughness</subject><issn>2766-0400</issn><issn>2766-0400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpN0E1OwzAQBeAIgURVegQkXyBl4ji2s0QVP5UqwQLW1sSZNK7SuNjJgtvTtAWxmtEbzbd4SXKfwTIDDQ9cSQkCYMmBiyUXmdS6vEpmU55Oh-t_-22yiHEHAFyrnOcwS5r3QLWzg-u3bGiJxTE0aIkFP27bnmJkvmHYM-rIDsHXdPDRDVQz6w8HCqxx3Z6NcXpHtkfbup5YRxj6k0i27d3XSHfJTYNdpMVlzpPP56eP1Wu6eXtZrx43qeVaD2lWa9BlLUBTgVIJzMqsKklJlKKouBQoylo1eak5B5VJyUErtLUqikJwkPk8WZ_d2uPOHILbY_g2Hp05BT5sDYbB2Y6MLRXhkcAGrCCr8UhWFVgoeS4Fx6NVnC0bfIyBmj8vAzN1b367N1P35tJ9_gPybnaQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Tamura, Ryo</creator><creator>Inaba, Ryuichi</creator><creator>Watanabe, Mami</creator><creator>Mori, Yutaro</creator><creator>Urushihara, Makoto</creator><creator>Yamaguchi, Kenji</creator><creator>Matsuda, Shoichi</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20241231</creationdate><title>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</title><author>Tamura, Ryo ; Inaba, Ryuichi ; Watanabe, Mami ; Mori, Yutaro ; Urushihara, Makoto ; Yamaguchi, Kenji ; Matsuda, Shoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>copper film</topic><topic>electrochemistry</topic><topic>Electrodeposition</topic><topic>machine learning</topic><topic>surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamura, Ryo</creatorcontrib><creatorcontrib>Inaba, Ryuichi</creatorcontrib><creatorcontrib>Watanabe, Mami</creatorcontrib><creatorcontrib>Mori, Yutaro</creatorcontrib><creatorcontrib>Urushihara, Makoto</creatorcontrib><creatorcontrib>Yamaguchi, Kenji</creatorcontrib><creatorcontrib>Matsuda, Shoichi</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of advanced materials. Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamura, Ryo</au><au>Inaba, Ryuichi</au><au>Watanabe, Mami</au><au>Mori, Yutaro</au><au>Urushihara, Makoto</au><au>Yamaguchi, Kenji</au><au>Matsuda, Shoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</atitle><jtitle>Science and technology of advanced materials. Methods</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><issn>2766-0400</issn><eissn>2766-0400</eissn><abstract>Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/27660400.2024.2416889</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2766-0400 |
ispartof | Science and technology of advanced materials. Methods, 2024-12, Vol.4 (1) |
issn | 2766-0400 2766-0400 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a |
source | Taylor & Francis |
subjects | copper film electrochemistry Electrodeposition machine learning surface roughness |
title | Predicting the surface roughness of an electrodeposited copper film using a machine learning technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20surface%20roughness%20of%20an%20electrodeposited%20copper%20film%20using%20a%20machine%20learning%20technique&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials.%20Methods&rft.au=Tamura,%20Ryo&rft.date=2024-12-31&rft.volume=4&rft.issue=1&rft.issn=2766-0400&rft.eissn=2766-0400&rft_id=info:doi/10.1080/27660400.2024.2416889&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |