Loading…

Predicting the surface roughness of an electrodeposited copper film using a machine learning technique

Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions require...

Full description

Saved in:
Bibliographic Details
Published in:Science and technology of advanced materials. Methods 2024-12, Vol.4 (1)
Main Authors: Tamura, Ryo, Inaba, Ryuichi, Watanabe, Mami, Mori, Yutaro, Urushihara, Makoto, Yamaguchi, Kenji, Matsuda, Shoichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063
container_end_page
container_issue 1
container_start_page
container_title Science and technology of advanced materials. Methods
container_volume 4
creator Tamura, Ryo
Inaba, Ryuichi
Watanabe, Mami
Mori, Yutaro
Urushihara, Makoto
Yamaguchi, Kenji
Matsuda, Shoichi
description Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance.
doi_str_mv 10.1080/27660400.2024.2416889
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a</doaj_id><sourcerecordid>oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063</originalsourceid><addsrcrecordid>eNpN0E1OwzAQBeAIgURVegQkXyBl4ji2s0QVP5UqwQLW1sSZNK7SuNjJgtvTtAWxmtEbzbd4SXKfwTIDDQ9cSQkCYMmBiyUXmdS6vEpmU55Oh-t_-22yiHEHAFyrnOcwS5r3QLWzg-u3bGiJxTE0aIkFP27bnmJkvmHYM-rIDsHXdPDRDVQz6w8HCqxx3Z6NcXpHtkfbup5YRxj6k0i27d3XSHfJTYNdpMVlzpPP56eP1Wu6eXtZrx43qeVaD2lWa9BlLUBTgVIJzMqsKklJlKKouBQoylo1eak5B5VJyUErtLUqikJwkPk8WZ_d2uPOHILbY_g2Hp05BT5sDYbB2Y6MLRXhkcAGrCCr8UhWFVgoeS4Fx6NVnC0bfIyBmj8vAzN1b367N1P35tJ9_gPybnaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</title><source>Taylor &amp; Francis</source><creator>Tamura, Ryo ; Inaba, Ryuichi ; Watanabe, Mami ; Mori, Yutaro ; Urushihara, Makoto ; Yamaguchi, Kenji ; Matsuda, Shoichi</creator><creatorcontrib>Tamura, Ryo ; Inaba, Ryuichi ; Watanabe, Mami ; Mori, Yutaro ; Urushihara, Makoto ; Yamaguchi, Kenji ; Matsuda, Shoichi</creatorcontrib><description>Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance.</description><identifier>ISSN: 2766-0400</identifier><identifier>EISSN: 2766-0400</identifier><identifier>DOI: 10.1080/27660400.2024.2416889</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>copper film ; electrochemistry ; Electrodeposition ; machine learning ; surface roughness</subject><ispartof>Science and technology of advanced materials. Methods, 2024-12, Vol.4 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tamura, Ryo</creatorcontrib><creatorcontrib>Inaba, Ryuichi</creatorcontrib><creatorcontrib>Watanabe, Mami</creatorcontrib><creatorcontrib>Mori, Yutaro</creatorcontrib><creatorcontrib>Urushihara, Makoto</creatorcontrib><creatorcontrib>Yamaguchi, Kenji</creatorcontrib><creatorcontrib>Matsuda, Shoichi</creatorcontrib><title>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</title><title>Science and technology of advanced materials. Methods</title><description>Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance.</description><subject>copper film</subject><subject>electrochemistry</subject><subject>Electrodeposition</subject><subject>machine learning</subject><subject>surface roughness</subject><issn>2766-0400</issn><issn>2766-0400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpN0E1OwzAQBeAIgURVegQkXyBl4ji2s0QVP5UqwQLW1sSZNK7SuNjJgtvTtAWxmtEbzbd4SXKfwTIDDQ9cSQkCYMmBiyUXmdS6vEpmU55Oh-t_-22yiHEHAFyrnOcwS5r3QLWzg-u3bGiJxTE0aIkFP27bnmJkvmHYM-rIDsHXdPDRDVQz6w8HCqxx3Z6NcXpHtkfbup5YRxj6k0i27d3XSHfJTYNdpMVlzpPP56eP1Wu6eXtZrx43qeVaD2lWa9BlLUBTgVIJzMqsKklJlKKouBQoylo1eak5B5VJyUErtLUqikJwkPk8WZ_d2uPOHILbY_g2Hp05BT5sDYbB2Y6MLRXhkcAGrCCr8UhWFVgoeS4Fx6NVnC0bfIyBmj8vAzN1b367N1P35tJ9_gPybnaQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Tamura, Ryo</creator><creator>Inaba, Ryuichi</creator><creator>Watanabe, Mami</creator><creator>Mori, Yutaro</creator><creator>Urushihara, Makoto</creator><creator>Yamaguchi, Kenji</creator><creator>Matsuda, Shoichi</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20241231</creationdate><title>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</title><author>Tamura, Ryo ; Inaba, Ryuichi ; Watanabe, Mami ; Mori, Yutaro ; Urushihara, Makoto ; Yamaguchi, Kenji ; Matsuda, Shoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>copper film</topic><topic>electrochemistry</topic><topic>Electrodeposition</topic><topic>machine learning</topic><topic>surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamura, Ryo</creatorcontrib><creatorcontrib>Inaba, Ryuichi</creatorcontrib><creatorcontrib>Watanabe, Mami</creatorcontrib><creatorcontrib>Mori, Yutaro</creatorcontrib><creatorcontrib>Urushihara, Makoto</creatorcontrib><creatorcontrib>Yamaguchi, Kenji</creatorcontrib><creatorcontrib>Matsuda, Shoichi</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of advanced materials. Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamura, Ryo</au><au>Inaba, Ryuichi</au><au>Watanabe, Mami</au><au>Mori, Yutaro</au><au>Urushihara, Makoto</au><au>Yamaguchi, Kenji</au><au>Matsuda, Shoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the surface roughness of an electrodeposited copper film using a machine learning technique</atitle><jtitle>Science and technology of advanced materials. Methods</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><issn>2766-0400</issn><eissn>2766-0400</eissn><abstract>Electrodeposition-based metal coating techniques are used to manufacture various industrial products and rely on the quantitative control of the physical properties of the coating layers, such as electrical conductivity, surface roughness, and hardness. To clarify the experimental conditions required to realize the desired physical properties of metal coating layers and shed light on the complex mechanism of the involved reactions, we prepared a custom-built experimental dataset (60 conditions) on the surface roughness of electrodeposited thin copper films and submitted it to an open-access data repository. Data-driven analysis revealed that surface roughness is strongly affected by the deposition temperature, current, and interelectrode distance.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/27660400.2024.2416889</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2766-0400
ispartof Science and technology of advanced materials. Methods, 2024-12, Vol.4 (1)
issn 2766-0400
2766-0400
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a
source Taylor & Francis
subjects copper film
electrochemistry
Electrodeposition
machine learning
surface roughness
title Predicting the surface roughness of an electrodeposited copper film using a machine learning technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20surface%20roughness%20of%20an%20electrodeposited%20copper%20film%20using%20a%20machine%20learning%20technique&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials.%20Methods&rft.au=Tamura,%20Ryo&rft.date=2024-12-31&rft.volume=4&rft.issue=1&rft.issn=2766-0400&rft.eissn=2766-0400&rft_id=info:doi/10.1080/27660400.2024.2416889&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_c97ea166af0c4ec8a220bb0c0923642a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1d8089d408e5a674a191b9e76a645b264a49d7f39822071662087acd755542063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true