Loading…
MeshNet-SP: A Semantic Urban 3D Mesh Segmentation Network with Sparse Prior
A textured urban 3D mesh is an important part of 3D real scene technology. Semantically segmenting an urban 3D mesh is a key task in the photogrammetry and remote sensing field. However, due to the irregular structure of a 3D mesh and redundant texture information, it is a challenging issue to obtai...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (22), p.5324 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-cf3f94f8f7593079b3068e8447d01d3e85d77e3724d23c9030be8f571407ee993 |
container_end_page | |
container_issue | 22 |
container_start_page | 5324 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Zhang, Guangyun Zhang, Rongting |
description | A textured urban 3D mesh is an important part of 3D real scene technology. Semantically segmenting an urban 3D mesh is a key task in the photogrammetry and remote sensing field. However, due to the irregular structure of a 3D mesh and redundant texture information, it is a challenging issue to obtain high and robust semantic segmentation results for an urban 3D mesh. To address this issue, we propose a semantic urban 3D mesh segmentation network (MeshNet) with sparse prior (SP), named MeshNet-SP. MeshNet-SP consists of a differentiable sparse coding (DSC) subnetwork and a semantic feature extraction (SFE) subnetwork. The DSC subnetwork learns low-intrinsic-dimensional features from raw texture information, which increases the effectiveness and robustness of semantic urban 3D mesh segmentation. The SFE subnetwork produces high-level semantic features from the combination of features containing the geometric features of a mesh and the low-intrinsic-dimensional features of texture information. The proposed method is evaluated on the SUM dataset. The results of ablation experiments demonstrate that the low-intrinsic-dimensional feature is the key to achieving high and robust semantic segmentation results. The comparison results show that the proposed method can achieve competitive accuracies, and the maximum increase can reach 34.5%, 35.4%, and 31.8% in mR, mF1, and mIoU, respectively. |
doi_str_mv | 10.3390/rs15225324 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c98a4a77e28c41ddae4b9c5cba8167bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774325726</galeid><doaj_id>oai_doaj_org_article_c98a4a77e28c41ddae4b9c5cba8167bc</doaj_id><sourcerecordid>A774325726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cf3f94f8f7593079b3068e8447d01d3e85d77e3724d23c9030be8f571407ee993</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEhNw4RdU4obUkcZpk3Cbxqf4lAbnKE2dkbE1IylC_HsyioD4EOv160e2nGWHJRkDSHISYllRWgFlW9mIEk4LRiXd_pfvZgcxLkh6AKUkbJTd3GF8uce-mD2e5pN8hivd9c7kz6HRXQ5n-aae5PkKu173znd5cn_48Jp_uD5V1jpEzB-D82E_27F6GfHg59_Lni_On6ZXxe3D5fV0clsYqGRfGAtWMissryQQLhsgtUDBGG9J2QKKquUcgVPWUjCSAGlQ2IqXjHBEKWEvux64rdcLtQ5upcOn8tqpb8GHudIhLbFEZaTQTCccFYaVbauRNdJUptGirHljEutoYK2Df3vH2KuFfw9dGl9RIQEYqwVNrvHgmusEdZ31fdAmRYsrZ3yH1iV9wjkDWnFap4bjocEEH2NA-ztmSdTmWOrvWPAFGN6Dgw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893344682</pqid></control><display><type>article</type><title>MeshNet-SP: A Semantic Urban 3D Mesh Segmentation Network with Sparse Prior</title><source>ProQuest - Publicly Available Content Database</source><creator>Zhang, Guangyun ; Zhang, Rongting</creator><creatorcontrib>Zhang, Guangyun ; Zhang, Rongting</creatorcontrib><description>A textured urban 3D mesh is an important part of 3D real scene technology. Semantically segmenting an urban 3D mesh is a key task in the photogrammetry and remote sensing field. However, due to the irregular structure of a 3D mesh and redundant texture information, it is a challenging issue to obtain high and robust semantic segmentation results for an urban 3D mesh. To address this issue, we propose a semantic urban 3D mesh segmentation network (MeshNet) with sparse prior (SP), named MeshNet-SP. MeshNet-SP consists of a differentiable sparse coding (DSC) subnetwork and a semantic feature extraction (SFE) subnetwork. The DSC subnetwork learns low-intrinsic-dimensional features from raw texture information, which increases the effectiveness and robustness of semantic urban 3D mesh segmentation. The SFE subnetwork produces high-level semantic features from the combination of features containing the geometric features of a mesh and the low-intrinsic-dimensional features of texture information. The proposed method is evaluated on the SUM dataset. The results of ablation experiments demonstrate that the low-intrinsic-dimensional feature is the key to achieving high and robust semantic segmentation results. The comparison results show that the proposed method can achieve competitive accuracies, and the maximum increase can reach 34.5%, 35.4%, and 31.8% in mR, mF1, and mIoU, respectively.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15225324</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D real scene ; Ablation ; convolutional neural network ; Deep learning ; Feature extraction ; low intrinsic dimension ; Methods ; Optimization algorithms ; Photogrammetry ; Remote sensing ; Robustness ; Semantic segmentation ; Semantics ; sparse prior ; Texture ; urban 3D mesh ; Urban areas</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5324</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-cf3f94f8f7593079b3068e8447d01d3e85d77e3724d23c9030be8f571407ee993</cites><orcidid>0000-0003-2322-4464 ; 0000-0003-2183-9553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893344682/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893344682?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Guangyun</creatorcontrib><creatorcontrib>Zhang, Rongting</creatorcontrib><title>MeshNet-SP: A Semantic Urban 3D Mesh Segmentation Network with Sparse Prior</title><title>Remote sensing (Basel, Switzerland)</title><description>A textured urban 3D mesh is an important part of 3D real scene technology. Semantically segmenting an urban 3D mesh is a key task in the photogrammetry and remote sensing field. However, due to the irregular structure of a 3D mesh and redundant texture information, it is a challenging issue to obtain high and robust semantic segmentation results for an urban 3D mesh. To address this issue, we propose a semantic urban 3D mesh segmentation network (MeshNet) with sparse prior (SP), named MeshNet-SP. MeshNet-SP consists of a differentiable sparse coding (DSC) subnetwork and a semantic feature extraction (SFE) subnetwork. The DSC subnetwork learns low-intrinsic-dimensional features from raw texture information, which increases the effectiveness and robustness of semantic urban 3D mesh segmentation. The SFE subnetwork produces high-level semantic features from the combination of features containing the geometric features of a mesh and the low-intrinsic-dimensional features of texture information. The proposed method is evaluated on the SUM dataset. The results of ablation experiments demonstrate that the low-intrinsic-dimensional feature is the key to achieving high and robust semantic segmentation results. The comparison results show that the proposed method can achieve competitive accuracies, and the maximum increase can reach 34.5%, 35.4%, and 31.8% in mR, mF1, and mIoU, respectively.</description><subject>3D real scene</subject><subject>Ablation</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>low intrinsic dimension</subject><subject>Methods</subject><subject>Optimization algorithms</subject><subject>Photogrammetry</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>sparse prior</subject><subject>Texture</subject><subject>urban 3D mesh</subject><subject>Urban areas</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEhNw4RdU4obUkcZpk3Cbxqf4lAbnKE2dkbE1IylC_HsyioD4EOv160e2nGWHJRkDSHISYllRWgFlW9mIEk4LRiXd_pfvZgcxLkh6AKUkbJTd3GF8uce-mD2e5pN8hivd9c7kz6HRXQ5n-aae5PkKu173znd5cn_48Jp_uD5V1jpEzB-D82E_27F6GfHg59_Lni_On6ZXxe3D5fV0clsYqGRfGAtWMissryQQLhsgtUDBGG9J2QKKquUcgVPWUjCSAGlQ2IqXjHBEKWEvux64rdcLtQ5upcOn8tqpb8GHudIhLbFEZaTQTCccFYaVbauRNdJUptGirHljEutoYK2Df3vH2KuFfw9dGl9RIQEYqwVNrvHgmusEdZ31fdAmRYsrZ3yH1iV9wjkDWnFap4bjocEEH2NA-ztmSdTmWOrvWPAFGN6Dgw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Guangyun</creator><creator>Zhang, Rongting</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2322-4464</orcidid><orcidid>https://orcid.org/0000-0003-2183-9553</orcidid></search><sort><creationdate>20231101</creationdate><title>MeshNet-SP: A Semantic Urban 3D Mesh Segmentation Network with Sparse Prior</title><author>Zhang, Guangyun ; Zhang, Rongting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cf3f94f8f7593079b3068e8447d01d3e85d77e3724d23c9030be8f571407ee993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D real scene</topic><topic>Ablation</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>low intrinsic dimension</topic><topic>Methods</topic><topic>Optimization algorithms</topic><topic>Photogrammetry</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>sparse prior</topic><topic>Texture</topic><topic>urban 3D mesh</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangyun</creatorcontrib><creatorcontrib>Zhang, Rongting</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangyun</au><au>Zhang, Rongting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MeshNet-SP: A Semantic Urban 3D Mesh Segmentation Network with Sparse Prior</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>22</issue><spage>5324</spage><pages>5324-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>A textured urban 3D mesh is an important part of 3D real scene technology. Semantically segmenting an urban 3D mesh is a key task in the photogrammetry and remote sensing field. However, due to the irregular structure of a 3D mesh and redundant texture information, it is a challenging issue to obtain high and robust semantic segmentation results for an urban 3D mesh. To address this issue, we propose a semantic urban 3D mesh segmentation network (MeshNet) with sparse prior (SP), named MeshNet-SP. MeshNet-SP consists of a differentiable sparse coding (DSC) subnetwork and a semantic feature extraction (SFE) subnetwork. The DSC subnetwork learns low-intrinsic-dimensional features from raw texture information, which increases the effectiveness and robustness of semantic urban 3D mesh segmentation. The SFE subnetwork produces high-level semantic features from the combination of features containing the geometric features of a mesh and the low-intrinsic-dimensional features of texture information. The proposed method is evaluated on the SUM dataset. The results of ablation experiments demonstrate that the low-intrinsic-dimensional feature is the key to achieving high and robust semantic segmentation results. The comparison results show that the proposed method can achieve competitive accuracies, and the maximum increase can reach 34.5%, 35.4%, and 31.8% in mR, mF1, and mIoU, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15225324</doi><orcidid>https://orcid.org/0000-0003-2322-4464</orcidid><orcidid>https://orcid.org/0000-0003-2183-9553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5324 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c98a4a77e28c41ddae4b9c5cba8167bc |
source | ProQuest - Publicly Available Content Database |
subjects | 3D real scene Ablation convolutional neural network Deep learning Feature extraction low intrinsic dimension Methods Optimization algorithms Photogrammetry Remote sensing Robustness Semantic segmentation Semantics sparse prior Texture urban 3D mesh Urban areas |
title | MeshNet-SP: A Semantic Urban 3D Mesh Segmentation Network with Sparse Prior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MeshNet-SP:%20A%20Semantic%20Urban%203D%20Mesh%20Segmentation%20Network%20with%20Sparse%20Prior&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Zhang,%20Guangyun&rft.date=2023-11-01&rft.volume=15&rft.issue=22&rft.spage=5324&rft.pages=5324-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15225324&rft_dat=%3Cgale_doaj_%3EA774325726%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-cf3f94f8f7593079b3068e8447d01d3e85d77e3724d23c9030be8f571407ee993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893344682&rft_id=info:pmid/&rft_galeid=A774325726&rfr_iscdi=true |