Loading…

Ultrasound assisted wall-breaking extraction and primary structures, bioactivities, rheological properties of novel Exidia yadongensis polysaccharide

New natural multifunctional polysaccharide and its innovatory extraction technology may be urgently needed for food industries. Our aims were to establish new extraction method and investigate the primary structures, bioactivities and rheological properties of novel E. yadongensis polysaccharide (EY...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics sonochemistry 2023-12, Vol.101, p.106643-106643, Article 106643
Main Authors: Tang, Ying, Miao, Yuzhi, Tan, Min, Ma, Qinqin, Liu, Chengyi, Yang, Mei, Su, Yanqiu, Li, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New natural multifunctional polysaccharide and its innovatory extraction technology may be urgently needed for food industries. Our aims were to establish new extraction method and investigate the primary structures, bioactivities and rheological properties of novel E. yadongensis polysaccharide (EYP). Ultrasound assisted mechanical wall-breaking extraction (MAUE) was successfully established for the EYP extraction from a new E. yadongensis. Based on the MAUE with RSM, the polysaccharide yield of 17.92 ± 0.56 % with the optimal parameters of five extraction factors were obtained, and current MAUE was characterized by its high yield, low extraction temperature and short ultrasound time. After the isolation and purification, the EYP as a protein-bound polysaccharide was obtained. FT-IR and NMR analysis showed that the main backbone of the EYP comprised of (1 → 4)-β-D-glucopyranosyl and (1 → 6)-ɑ-D-mannopyranosyl groups; EYP exhibited significant antioxidant, antibacterial, antitumor, antidiabetic activities, and good viscoelastic properties in low pH solutions (P 
ISSN:1350-4177
1873-2828
DOI:10.1016/j.ultsonch.2023.106643