Loading…

Effect of Er on the Hot Deformation Behavior of the Crossover Al3Zn3Mg3Cu0.2Zr Alloy

The effect of an erbium alloying on the hot deformation behavior of the crossover Al3Zn3Mg3Cu0.2Zr alloy was investigated in detail. First of all, Er increases the solidus temperature of the alloy. This allows hot deformation at a higher temperature. The precipitates resulting from the Er alloying o...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2024-10, Vol.14 (10), p.1114
Main Authors: Glavatskikh, Maria V., Gorlov, Leonid E., Loginova, Irina S., Barkov, Ruslan Yu, Khomutov, Maxim G., Churyumov, Alexander Yu, Pozdniakov, Andrey V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c291t-7ff0158a907ef985e023a6185b69149401b7f432775886682a86f45825b909543
container_end_page
container_issue 10
container_start_page 1114
container_title Metals (Basel )
container_volume 14
creator Glavatskikh, Maria V.
Gorlov, Leonid E.
Loginova, Irina S.
Barkov, Ruslan Yu
Khomutov, Maxim G.
Churyumov, Alexander Yu
Pozdniakov, Andrey V.
description The effect of an erbium alloying on the hot deformation behavior of the crossover Al3Zn3Mg3Cu0.2Zr alloy was investigated in detail. First of all, Er increases the solidus temperature of the alloy. This allows hot deformation at a higher temperature. The precipitates resulting from the Er alloying of the Al3Zn3Mg3Cu0.2Zr alloy were analyzed using transmission electron microscopy. Erbium addition to the alloy produces the formation of more stable and fine L12-(Al3(Zr, Er)) precipitates with a size of 20–60 nm. True stress tends to increase with a decline in the temperature and an increase in the deformation rate. The addition of Er leads to decreases in true stress at the strain rates of 0.01–1 s−1 due to particle-stimulated nucleation softening mechanisms. The effective activation energy of the alloy with the Er addition has a lower value, enabling an easier hot deformation process in the alloy with an elevated volume fraction of the intermetallic particles. The addition of Er increases the strain rate sensitivity, which makes the failure during deformation less probable. The investigated alloys have a significant difference in the dependence of the activation volume on the temperature. The flow instability criterion allows better deformability of Er-doped alloys and enables the alloys to be formed more easily. The evenly distributed particles prevent the formation of shear bands with elevated storage energy and decrease the probability of crack initiation during the initial stages of hot deformation when only one softening mechanism (dynamic recovery) is working. The microstructure analysis proves that dynamic recovery is the main softening mechanism.
doi_str_mv 10.3390/met14101114
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c9b2592c092147f8a59ea3b07a2072f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814401872</galeid><doaj_id>oai_doaj_org_article_c9b2592c092147f8a59ea3b07a2072f2</doaj_id><sourcerecordid>A814401872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7ff0158a907ef985e023a6185b69149401b7f432775886682a86f45825b909543</originalsourceid><addsrcrecordid>eNpNkU9PAjEQxTdGE4ly8gts4tGA03_b9ogrCgnGC164NN2lhSXLFruFhG9v1zWGzqHNm9dfXmaS5AHBmBAJz3sTEEWAEKJXyQADZyPKAV1fvG-TYdvuIB6BM5BykCyn1poypM6mU5-6Jg1bk85cSF-NdX6vQxW1F7PVp8r5ztX1c-_a1p2MTyc1WTXkY0PyI4zxqhNqd75PbqyuWzP8u--Sr7fpMp-NFp_v83yyGJVYojDi1gJiQkvgxkrBDGCiMyRYkUlEJQVUcEsJ5pwJkWUCa5FZygRmhQTJKLlL5j137fROHXy11_6snK7Ur-D8RmkfqrI2qpQFZhKXIDGi3ArNpNGkAK7jcLDFkfXYsw7efR9NG9TOHX0T4yuCogcIAIuuce_a6AitGuuC12WstdlXpWuMraI-EYjG9IJ32Kf-Q9nNzBv7HxOB6tamLtZGfgAVc4RU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120703005</pqid></control><display><type>article</type><title>Effect of Er on the Hot Deformation Behavior of the Crossover Al3Zn3Mg3Cu0.2Zr Alloy</title><source>ProQuest Publicly Available Content database</source><creator>Glavatskikh, Maria V. ; Gorlov, Leonid E. ; Loginova, Irina S. ; Barkov, Ruslan Yu ; Khomutov, Maxim G. ; Churyumov, Alexander Yu ; Pozdniakov, Andrey V.</creator><creatorcontrib>Glavatskikh, Maria V. ; Gorlov, Leonid E. ; Loginova, Irina S. ; Barkov, Ruslan Yu ; Khomutov, Maxim G. ; Churyumov, Alexander Yu ; Pozdniakov, Andrey V.</creatorcontrib><description>The effect of an erbium alloying on the hot deformation behavior of the crossover Al3Zn3Mg3Cu0.2Zr alloy was investigated in detail. First of all, Er increases the solidus temperature of the alloy. This allows hot deformation at a higher temperature. The precipitates resulting from the Er alloying of the Al3Zn3Mg3Cu0.2Zr alloy were analyzed using transmission electron microscopy. Erbium addition to the alloy produces the formation of more stable and fine L12-(Al3(Zr, Er)) precipitates with a size of 20–60 nm. True stress tends to increase with a decline in the temperature and an increase in the deformation rate. The addition of Er leads to decreases in true stress at the strain rates of 0.01–1 s−1 due to particle-stimulated nucleation softening mechanisms. The effective activation energy of the alloy with the Er addition has a lower value, enabling an easier hot deformation process in the alloy with an elevated volume fraction of the intermetallic particles. The addition of Er increases the strain rate sensitivity, which makes the failure during deformation less probable. The investigated alloys have a significant difference in the dependence of the activation volume on the temperature. The flow instability criterion allows better deformability of Er-doped alloys and enables the alloys to be formed more easily. The evenly distributed particles prevent the formation of shear bands with elevated storage energy and decrease the probability of crack initiation during the initial stages of hot deformation when only one softening mechanism (dynamic recovery) is working. The microstructure analysis proves that dynamic recovery is the main softening mechanism.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met14101114</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activation energy ; Alloying ; Alloys ; Aluminum alloys ; Analysis ; Annealing ; Atoms &amp; subatomic particles ; Corrosion resistance ; Crack initiation ; Crossovers ; Deformation ; Deformation effects ; Deformation mechanisms ; dynamic recovery ; Edge dislocations ; erbium ; Formability ; Grain size ; Heat resistance ; Homogenization ; hot deformation behavior ; Intermetallic compounds ; Investigations ; Mechanical properties ; Morphology ; Nucleation ; Oxidation ; Precipitates ; processing maps ; Recovery ; Shear bands ; Softening ; Software ; Solidification ; Solidus ; Specialty metals industry ; Stability criteria ; Strain rate sensitivity ; Temperature ; Temperature dependence ; True stress ; Zirconium</subject><ispartof>Metals (Basel ), 2024-10, Vol.14 (10), p.1114</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-7ff0158a907ef985e023a6185b69149401b7f432775886682a86f45825b909543</cites><orcidid>0000-0003-1443-5577 ; 0000-0002-7701-1600 ; 0000-0003-0933-056X ; 0000-0002-3116-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120703005/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120703005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Glavatskikh, Maria V.</creatorcontrib><creatorcontrib>Gorlov, Leonid E.</creatorcontrib><creatorcontrib>Loginova, Irina S.</creatorcontrib><creatorcontrib>Barkov, Ruslan Yu</creatorcontrib><creatorcontrib>Khomutov, Maxim G.</creatorcontrib><creatorcontrib>Churyumov, Alexander Yu</creatorcontrib><creatorcontrib>Pozdniakov, Andrey V.</creatorcontrib><title>Effect of Er on the Hot Deformation Behavior of the Crossover Al3Zn3Mg3Cu0.2Zr Alloy</title><title>Metals (Basel )</title><description>The effect of an erbium alloying on the hot deformation behavior of the crossover Al3Zn3Mg3Cu0.2Zr alloy was investigated in detail. First of all, Er increases the solidus temperature of the alloy. This allows hot deformation at a higher temperature. The precipitates resulting from the Er alloying of the Al3Zn3Mg3Cu0.2Zr alloy were analyzed using transmission electron microscopy. Erbium addition to the alloy produces the formation of more stable and fine L12-(Al3(Zr, Er)) precipitates with a size of 20–60 nm. True stress tends to increase with a decline in the temperature and an increase in the deformation rate. The addition of Er leads to decreases in true stress at the strain rates of 0.01–1 s−1 due to particle-stimulated nucleation softening mechanisms. The effective activation energy of the alloy with the Er addition has a lower value, enabling an easier hot deformation process in the alloy with an elevated volume fraction of the intermetallic particles. The addition of Er increases the strain rate sensitivity, which makes the failure during deformation less probable. The investigated alloys have a significant difference in the dependence of the activation volume on the temperature. The flow instability criterion allows better deformability of Er-doped alloys and enables the alloys to be formed more easily. The evenly distributed particles prevent the formation of shear bands with elevated storage energy and decrease the probability of crack initiation during the initial stages of hot deformation when only one softening mechanism (dynamic recovery) is working. The microstructure analysis proves that dynamic recovery is the main softening mechanism.</description><subject>Activation energy</subject><subject>Alloying</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Analysis</subject><subject>Annealing</subject><subject>Atoms &amp; subatomic particles</subject><subject>Corrosion resistance</subject><subject>Crack initiation</subject><subject>Crossovers</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>dynamic recovery</subject><subject>Edge dislocations</subject><subject>erbium</subject><subject>Formability</subject><subject>Grain size</subject><subject>Heat resistance</subject><subject>Homogenization</subject><subject>hot deformation behavior</subject><subject>Intermetallic compounds</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Oxidation</subject><subject>Precipitates</subject><subject>processing maps</subject><subject>Recovery</subject><subject>Shear bands</subject><subject>Softening</subject><subject>Software</subject><subject>Solidification</subject><subject>Solidus</subject><subject>Specialty metals industry</subject><subject>Stability criteria</subject><subject>Strain rate sensitivity</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>True stress</subject><subject>Zirconium</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9PAjEQxTdGE4ly8gts4tGA03_b9ogrCgnGC164NN2lhSXLFruFhG9v1zWGzqHNm9dfXmaS5AHBmBAJz3sTEEWAEKJXyQADZyPKAV1fvG-TYdvuIB6BM5BykCyn1poypM6mU5-6Jg1bk85cSF-NdX6vQxW1F7PVp8r5ztX1c-_a1p2MTyc1WTXkY0PyI4zxqhNqd75PbqyuWzP8u--Sr7fpMp-NFp_v83yyGJVYojDi1gJiQkvgxkrBDGCiMyRYkUlEJQVUcEsJ5pwJkWUCa5FZygRmhQTJKLlL5j137fROHXy11_6snK7Ur-D8RmkfqrI2qpQFZhKXIDGi3ArNpNGkAK7jcLDFkfXYsw7efR9NG9TOHX0T4yuCogcIAIuuce_a6AitGuuC12WstdlXpWuMraI-EYjG9IJ32Kf-Q9nNzBv7HxOB6tamLtZGfgAVc4RU</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Glavatskikh, Maria V.</creator><creator>Gorlov, Leonid E.</creator><creator>Loginova, Irina S.</creator><creator>Barkov, Ruslan Yu</creator><creator>Khomutov, Maxim G.</creator><creator>Churyumov, Alexander Yu</creator><creator>Pozdniakov, Andrey V.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1443-5577</orcidid><orcidid>https://orcid.org/0000-0002-7701-1600</orcidid><orcidid>https://orcid.org/0000-0003-0933-056X</orcidid><orcidid>https://orcid.org/0000-0002-3116-5057</orcidid></search><sort><creationdate>20241001</creationdate><title>Effect of Er on the Hot Deformation Behavior of the Crossover Al3Zn3Mg3Cu0.2Zr Alloy</title><author>Glavatskikh, Maria V. ; Gorlov, Leonid E. ; Loginova, Irina S. ; Barkov, Ruslan Yu ; Khomutov, Maxim G. ; Churyumov, Alexander Yu ; Pozdniakov, Andrey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7ff0158a907ef985e023a6185b69149401b7f432775886682a86f45825b909543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activation energy</topic><topic>Alloying</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Analysis</topic><topic>Annealing</topic><topic>Atoms &amp; subatomic particles</topic><topic>Corrosion resistance</topic><topic>Crack initiation</topic><topic>Crossovers</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>dynamic recovery</topic><topic>Edge dislocations</topic><topic>erbium</topic><topic>Formability</topic><topic>Grain size</topic><topic>Heat resistance</topic><topic>Homogenization</topic><topic>hot deformation behavior</topic><topic>Intermetallic compounds</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Oxidation</topic><topic>Precipitates</topic><topic>processing maps</topic><topic>Recovery</topic><topic>Shear bands</topic><topic>Softening</topic><topic>Software</topic><topic>Solidification</topic><topic>Solidus</topic><topic>Specialty metals industry</topic><topic>Stability criteria</topic><topic>Strain rate sensitivity</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>True stress</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glavatskikh, Maria V.</creatorcontrib><creatorcontrib>Gorlov, Leonid E.</creatorcontrib><creatorcontrib>Loginova, Irina S.</creatorcontrib><creatorcontrib>Barkov, Ruslan Yu</creatorcontrib><creatorcontrib>Khomutov, Maxim G.</creatorcontrib><creatorcontrib>Churyumov, Alexander Yu</creatorcontrib><creatorcontrib>Pozdniakov, Andrey V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glavatskikh, Maria V.</au><au>Gorlov, Leonid E.</au><au>Loginova, Irina S.</au><au>Barkov, Ruslan Yu</au><au>Khomutov, Maxim G.</au><au>Churyumov, Alexander Yu</au><au>Pozdniakov, Andrey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Er on the Hot Deformation Behavior of the Crossover Al3Zn3Mg3Cu0.2Zr Alloy</atitle><jtitle>Metals (Basel )</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>1114</spage><pages>1114-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The effect of an erbium alloying on the hot deformation behavior of the crossover Al3Zn3Mg3Cu0.2Zr alloy was investigated in detail. First of all, Er increases the solidus temperature of the alloy. This allows hot deformation at a higher temperature. The precipitates resulting from the Er alloying of the Al3Zn3Mg3Cu0.2Zr alloy were analyzed using transmission electron microscopy. Erbium addition to the alloy produces the formation of more stable and fine L12-(Al3(Zr, Er)) precipitates with a size of 20–60 nm. True stress tends to increase with a decline in the temperature and an increase in the deformation rate. The addition of Er leads to decreases in true stress at the strain rates of 0.01–1 s−1 due to particle-stimulated nucleation softening mechanisms. The effective activation energy of the alloy with the Er addition has a lower value, enabling an easier hot deformation process in the alloy with an elevated volume fraction of the intermetallic particles. The addition of Er increases the strain rate sensitivity, which makes the failure during deformation less probable. The investigated alloys have a significant difference in the dependence of the activation volume on the temperature. The flow instability criterion allows better deformability of Er-doped alloys and enables the alloys to be formed more easily. The evenly distributed particles prevent the formation of shear bands with elevated storage energy and decrease the probability of crack initiation during the initial stages of hot deformation when only one softening mechanism (dynamic recovery) is working. The microstructure analysis proves that dynamic recovery is the main softening mechanism.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met14101114</doi><orcidid>https://orcid.org/0000-0003-1443-5577</orcidid><orcidid>https://orcid.org/0000-0002-7701-1600</orcidid><orcidid>https://orcid.org/0000-0003-0933-056X</orcidid><orcidid>https://orcid.org/0000-0002-3116-5057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2024-10, Vol.14 (10), p.1114
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c9b2592c092147f8a59ea3b07a2072f2
source ProQuest Publicly Available Content database
subjects Activation energy
Alloying
Alloys
Aluminum alloys
Analysis
Annealing
Atoms & subatomic particles
Corrosion resistance
Crack initiation
Crossovers
Deformation
Deformation effects
Deformation mechanisms
dynamic recovery
Edge dislocations
erbium
Formability
Grain size
Heat resistance
Homogenization
hot deformation behavior
Intermetallic compounds
Investigations
Mechanical properties
Morphology
Nucleation
Oxidation
Precipitates
processing maps
Recovery
Shear bands
Softening
Software
Solidification
Solidus
Specialty metals industry
Stability criteria
Strain rate sensitivity
Temperature
Temperature dependence
True stress
Zirconium
title Effect of Er on the Hot Deformation Behavior of the Crossover Al3Zn3Mg3Cu0.2Zr Alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Er%20on%20the%20Hot%20Deformation%20Behavior%20of%20the%20Crossover%20Al3Zn3Mg3Cu0.2Zr%20Alloy&rft.jtitle=Metals%20(Basel%20)&rft.au=Glavatskikh,%20Maria%20V.&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=1114&rft.pages=1114-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met14101114&rft_dat=%3Cgale_doaj_%3EA814401872%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7ff0158a907ef985e023a6185b69149401b7f432775886682a86f45825b909543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120703005&rft_id=info:pmid/&rft_galeid=A814401872&rfr_iscdi=true