Loading…

Photonic diffractive generators through sampling noises from scattering media

Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative pho...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-12, Vol.15 (1), p.10643-9, Article 10643
Main Authors: Zhan, Ziyu, Wang, Hao, Liu, Qiang, Fu, Xing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3
container_end_page 9
container_issue 1
container_start_page 10643
container_title Nature communications
container_volume 15
creator Zhan, Ziyu
Wang, Hao
Liu, Qiang
Fu, Xing
description Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation. Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise.
doi_str_mv 10.1038/s41467-024-55058-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c9b3d0a6ab5549f0b5402c8acef240cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c9b3d0a6ab5549f0b5402c8acef240cd</doaj_id><sourcerecordid>3146569775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiNERau2L8ACRWLDJuB74hVCFZdKRWUBa8uxxzk-SuKD7VTq2-M0pbQs6sV4NP7ns8d_Vb3G6D1GtPuQGGaibRBhDeeIdw17UZ0QxHCDW0JfPsqPq_OU9qgsKnHH2KvqmErBqMDopPr-YxdymL2prXcuapP9DdQDzBB1DjHVeRfDMuzqpKfD6OehnoNPkGoXw1Qno3OGuJYnsF6fVUdOjwnO7_fT6teXzz8vvjVX118vLz5dNYYRkhtjnRPguMHOEgTYaoNEy7mUknMqiUBEGwquhxI7SpDgfV-CtQLxHjl6Wl1uXBv0Xh2in3S8VUF7dVcIcVA6Zm9GUEb21CItdM85kw71nCFiOm3AEYaMLayPG-uw9GUIA3OOenwCfXoy-50awo3CWBBGuCiEd_eEGH4vkLKafDIwjnqGsCRFi1NcyLblRfr2P-k-LHEuf7WqsOg62a1AsqlMDClFcA-vwUit7qvNfVXcV3fuK1aa3jye46Hlr9dFQDdBOqyOQfx39zPYPwmRvAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141688986</pqid></control><display><type>article</type><title>Photonic diffractive generators through sampling noises from scattering media</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhan, Ziyu ; Wang, Hao ; Liu, Qiang ; Fu, Xing</creator><creatorcontrib>Zhan, Ziyu ; Wang, Hao ; Liu, Qiang ; Fu, Xing</creatorcontrib><description>Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation. Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-55058-4</identifier><identifier>PMID: 39643610</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1107/510 ; 639/766/400 ; Accelerators ; Accessibility ; Computation ; Configuration management ; Data augmentation ; Design standards ; Energy efficiency ; Feasibility ; Hardware ; Humanities and Social Sciences ; Image enhancement ; Image processing ; Latency ; Light scattering ; multidisciplinary ; Neural networks ; Noise ; Noise generation ; Optical noise ; Parallel processing ; Photonics ; Science ; Science (multidisciplinary) ; Spatial data</subject><ispartof>Nature communications, 2024-12, Vol.15 (1), p.10643-9, Article 10643</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3</cites><orcidid>0000-0003-0210-3372 ; 0000-0003-1758-1561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3141688986/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3141688986?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39643610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Ziyu</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Fu, Xing</creatorcontrib><title>Photonic diffractive generators through sampling noises from scattering media</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation. Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise.</description><subject>639/624/1107/510</subject><subject>639/766/400</subject><subject>Accelerators</subject><subject>Accessibility</subject><subject>Computation</subject><subject>Configuration management</subject><subject>Data augmentation</subject><subject>Design standards</subject><subject>Energy efficiency</subject><subject>Feasibility</subject><subject>Hardware</subject><subject>Humanities and Social Sciences</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Latency</subject><subject>Light scattering</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Optical noise</subject><subject>Parallel processing</subject><subject>Photonics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial data</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhiNERau2L8ACRWLDJuB74hVCFZdKRWUBa8uxxzk-SuKD7VTq2-M0pbQs6sV4NP7ns8d_Vb3G6D1GtPuQGGaibRBhDeeIdw17UZ0QxHCDW0JfPsqPq_OU9qgsKnHH2KvqmErBqMDopPr-YxdymL2prXcuapP9DdQDzBB1DjHVeRfDMuzqpKfD6OehnoNPkGoXw1Qno3OGuJYnsF6fVUdOjwnO7_fT6teXzz8vvjVX118vLz5dNYYRkhtjnRPguMHOEgTYaoNEy7mUknMqiUBEGwquhxI7SpDgfV-CtQLxHjl6Wl1uXBv0Xh2in3S8VUF7dVcIcVA6Zm9GUEb21CItdM85kw71nCFiOm3AEYaMLayPG-uw9GUIA3OOenwCfXoy-50awo3CWBBGuCiEd_eEGH4vkLKafDIwjnqGsCRFi1NcyLblRfr2P-k-LHEuf7WqsOg62a1AsqlMDClFcA-vwUit7qvNfVXcV3fuK1aa3jye46Hlr9dFQDdBOqyOQfx39zPYPwmRvAk</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Zhan, Ziyu</creator><creator>Wang, Hao</creator><creator>Liu, Qiang</creator><creator>Fu, Xing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0210-3372</orcidid><orcidid>https://orcid.org/0000-0003-1758-1561</orcidid></search><sort><creationdate>20241206</creationdate><title>Photonic diffractive generators through sampling noises from scattering media</title><author>Zhan, Ziyu ; Wang, Hao ; Liu, Qiang ; Fu, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/624/1107/510</topic><topic>639/766/400</topic><topic>Accelerators</topic><topic>Accessibility</topic><topic>Computation</topic><topic>Configuration management</topic><topic>Data augmentation</topic><topic>Design standards</topic><topic>Energy efficiency</topic><topic>Feasibility</topic><topic>Hardware</topic><topic>Humanities and Social Sciences</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Latency</topic><topic>Light scattering</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Optical noise</topic><topic>Parallel processing</topic><topic>Photonics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Ziyu</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Fu, Xing</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Ziyu</au><au>Wang, Hao</au><au>Liu, Qiang</au><au>Fu, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic diffractive generators through sampling noises from scattering media</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>10643</spage><epage>9</epage><pages>10643-9</pages><artnum>10643</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation. Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39643610</pmid><doi>10.1038/s41467-024-55058-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0210-3372</orcidid><orcidid>https://orcid.org/0000-0003-1758-1561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-12, Vol.15 (1), p.10643-9, Article 10643
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c9b3d0a6ab5549f0b5402c8acef240cd
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1107/510
639/766/400
Accelerators
Accessibility
Computation
Configuration management
Data augmentation
Design standards
Energy efficiency
Feasibility
Hardware
Humanities and Social Sciences
Image enhancement
Image processing
Latency
Light scattering
multidisciplinary
Neural networks
Noise
Noise generation
Optical noise
Parallel processing
Photonics
Science
Science (multidisciplinary)
Spatial data
title Photonic diffractive generators through sampling noises from scattering media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20diffractive%20generators%20through%20sampling%20noises%20from%20scattering%20media&rft.jtitle=Nature%20communications&rft.au=Zhan,%20Ziyu&rft.date=2024-12-06&rft.volume=15&rft.issue=1&rft.spage=10643&rft.epage=9&rft.pages=10643-9&rft.artnum=10643&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-55058-4&rft_dat=%3Cproquest_doaj_%3E3146569775%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141688986&rft_id=info:pmid/39643610&rfr_iscdi=true