Loading…
Photonic diffractive generators through sampling noises from scattering media
Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative pho...
Saved in:
Published in: | Nature communications 2024-12, Vol.15 (1), p.10643-9, Article 10643 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 10643 |
container_title | Nature communications |
container_volume | 15 |
creator | Zhan, Ziyu Wang, Hao Liu, Qiang Fu, Xing |
description | Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation.
Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise. |
doi_str_mv | 10.1038/s41467-024-55058-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c9b3d0a6ab5549f0b5402c8acef240cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c9b3d0a6ab5549f0b5402c8acef240cd</doaj_id><sourcerecordid>3146569775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiNERau2L8ACRWLDJuB74hVCFZdKRWUBa8uxxzk-SuKD7VTq2-M0pbQs6sV4NP7ns8d_Vb3G6D1GtPuQGGaibRBhDeeIdw17UZ0QxHCDW0JfPsqPq_OU9qgsKnHH2KvqmErBqMDopPr-YxdymL2prXcuapP9DdQDzBB1DjHVeRfDMuzqpKfD6OehnoNPkGoXw1Qno3OGuJYnsF6fVUdOjwnO7_fT6teXzz8vvjVX118vLz5dNYYRkhtjnRPguMHOEgTYaoNEy7mUknMqiUBEGwquhxI7SpDgfV-CtQLxHjl6Wl1uXBv0Xh2in3S8VUF7dVcIcVA6Zm9GUEb21CItdM85kw71nCFiOm3AEYaMLayPG-uw9GUIA3OOenwCfXoy-50awo3CWBBGuCiEd_eEGH4vkLKafDIwjnqGsCRFi1NcyLblRfr2P-k-LHEuf7WqsOg62a1AsqlMDClFcA-vwUit7qvNfVXcV3fuK1aa3jye46Hlr9dFQDdBOqyOQfx39zPYPwmRvAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141688986</pqid></control><display><type>article</type><title>Photonic diffractive generators through sampling noises from scattering media</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhan, Ziyu ; Wang, Hao ; Liu, Qiang ; Fu, Xing</creator><creatorcontrib>Zhan, Ziyu ; Wang, Hao ; Liu, Qiang ; Fu, Xing</creatorcontrib><description>Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation.
Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-55058-4</identifier><identifier>PMID: 39643610</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1107/510 ; 639/766/400 ; Accelerators ; Accessibility ; Computation ; Configuration management ; Data augmentation ; Design standards ; Energy efficiency ; Feasibility ; Hardware ; Humanities and Social Sciences ; Image enhancement ; Image processing ; Latency ; Light scattering ; multidisciplinary ; Neural networks ; Noise ; Noise generation ; Optical noise ; Parallel processing ; Photonics ; Science ; Science (multidisciplinary) ; Spatial data</subject><ispartof>Nature communications, 2024-12, Vol.15 (1), p.10643-9, Article 10643</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3</cites><orcidid>0000-0003-0210-3372 ; 0000-0003-1758-1561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3141688986/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3141688986?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39643610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Ziyu</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Fu, Xing</creatorcontrib><title>Photonic diffractive generators through sampling noises from scattering media</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation.
Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise.</description><subject>639/624/1107/510</subject><subject>639/766/400</subject><subject>Accelerators</subject><subject>Accessibility</subject><subject>Computation</subject><subject>Configuration management</subject><subject>Data augmentation</subject><subject>Design standards</subject><subject>Energy efficiency</subject><subject>Feasibility</subject><subject>Hardware</subject><subject>Humanities and Social Sciences</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Latency</subject><subject>Light scattering</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Optical noise</subject><subject>Parallel processing</subject><subject>Photonics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial data</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhiNERau2L8ACRWLDJuB74hVCFZdKRWUBa8uxxzk-SuKD7VTq2-M0pbQs6sV4NP7ns8d_Vb3G6D1GtPuQGGaibRBhDeeIdw17UZ0QxHCDW0JfPsqPq_OU9qgsKnHH2KvqmErBqMDopPr-YxdymL2prXcuapP9DdQDzBB1DjHVeRfDMuzqpKfD6OehnoNPkGoXw1Qno3OGuJYnsF6fVUdOjwnO7_fT6teXzz8vvjVX118vLz5dNYYRkhtjnRPguMHOEgTYaoNEy7mUknMqiUBEGwquhxI7SpDgfV-CtQLxHjl6Wl1uXBv0Xh2in3S8VUF7dVcIcVA6Zm9GUEb21CItdM85kw71nCFiOm3AEYaMLayPG-uw9GUIA3OOenwCfXoy-50awo3CWBBGuCiEd_eEGH4vkLKafDIwjnqGsCRFi1NcyLblRfr2P-k-LHEuf7WqsOg62a1AsqlMDClFcA-vwUit7qvNfVXcV3fuK1aa3jye46Hlr9dFQDdBOqyOQfx39zPYPwmRvAk</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Zhan, Ziyu</creator><creator>Wang, Hao</creator><creator>Liu, Qiang</creator><creator>Fu, Xing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0210-3372</orcidid><orcidid>https://orcid.org/0000-0003-1758-1561</orcidid></search><sort><creationdate>20241206</creationdate><title>Photonic diffractive generators through sampling noises from scattering media</title><author>Zhan, Ziyu ; Wang, Hao ; Liu, Qiang ; Fu, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/624/1107/510</topic><topic>639/766/400</topic><topic>Accelerators</topic><topic>Accessibility</topic><topic>Computation</topic><topic>Configuration management</topic><topic>Data augmentation</topic><topic>Design standards</topic><topic>Energy efficiency</topic><topic>Feasibility</topic><topic>Hardware</topic><topic>Humanities and Social Sciences</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Latency</topic><topic>Light scattering</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Optical noise</topic><topic>Parallel processing</topic><topic>Photonics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Ziyu</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Fu, Xing</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Ziyu</au><au>Wang, Hao</au><au>Liu, Qiang</au><au>Fu, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic diffractive generators through sampling noises from scattering media</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>10643</spage><epage>9</epage><pages>10643-9</pages><artnum>10643</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation.
Large-scale generative photonic computing suffers from poor data accessibility, accuracy and hardware feasibility. Here, authors harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39643610</pmid><doi>10.1038/s41467-024-55058-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0210-3372</orcidid><orcidid>https://orcid.org/0000-0003-1758-1561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-12, Vol.15 (1), p.10643-9, Article 10643 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c9b3d0a6ab5549f0b5402c8acef240cd |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1107/510 639/766/400 Accelerators Accessibility Computation Configuration management Data augmentation Design standards Energy efficiency Feasibility Hardware Humanities and Social Sciences Image enhancement Image processing Latency Light scattering multidisciplinary Neural networks Noise Noise generation Optical noise Parallel processing Photonics Science Science (multidisciplinary) Spatial data |
title | Photonic diffractive generators through sampling noises from scattering media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20diffractive%20generators%20through%20sampling%20noises%20from%20scattering%20media&rft.jtitle=Nature%20communications&rft.au=Zhan,%20Ziyu&rft.date=2024-12-06&rft.volume=15&rft.issue=1&rft.spage=10643&rft.epage=9&rft.pages=10643-9&rft.artnum=10643&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-55058-4&rft_dat=%3Cproquest_doaj_%3E3146569775%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-cdff6ef5c1fd20e1dac0675599955392602ac3efbec3e832065bb065dd605b0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141688986&rft_id=info:pmid/39643610&rfr_iscdi=true |