Loading…
Development of an action programme tackling obesity-related behaviours in adolescents: a participatory system dynamics approach
System dynamics approaches are increasingly addressing the complexity of public health problems such as childhood overweight and obesity. These approaches often use system mapping methods, such as the construction of causal loop diagrams, to gain an understanding of the system of interest. However,...
Saved in:
Published in: | Health research policy and systems 2024-03, Vol.22 (1), p.30-30, Article 30 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | System dynamics approaches are increasingly addressing the complexity of public health problems such as childhood overweight and obesity. These approaches often use system mapping methods, such as the construction of causal loop diagrams, to gain an understanding of the system of interest. However, there is limited practical guidance on how such a system understanding can inform the development of an action programme that can facilitate systems changes. The Lifestyle Innovations Based on Youth Knowledge and Experience (LIKE) programme combines system dynamics and participatory action research to improve obesity-related behaviours, including diet, physical activity, sleep and sedentary behaviour, in 10-14-year-old adolescents in Amsterdam, the Netherlands. This paper illustrates how we used a previously obtained understanding of the system of obesity-related behaviours in adolescents to develop an action programme to facilitate systems changes. A team of evaluation researchers guided interdisciplinary action-groups throughout the process of identifying mechanisms, applying the Intervention Level Framework to identify leverage points and arriving at action ideas with aligning theories of change. The LIKE action programme consisted of 8 mechanisms, 9 leverage points and 14 action ideas which targeted the system's structure and function within multiple subsystems. This illustrates the feasibility of developing actions targeting higher system levels within the confines of a research project timeframe when sufficient and dedicated effort in this process is invested. Furthermore, the system dynamics action programme presented in this study contributes towards the development and implementation of public health programmes that aim to facilitate systems changes in practice. |
---|---|
ISSN: | 1478-4505 1478-4505 |
DOI: | 10.1186/s12961-024-01116-8 |