Loading…

Comparative study of a vitrinite-rich and an inertinite-rich Witbank coal (South Africa) using pyrolysis-gas chromatography

This study aims to compare iso-rank vitrinite-rich and inertinite-rich coal samples to understand the impact of coal-forming processes on pyrolysis chemistry. A medium rank C bituminous coal was density-fractionated to create a vitrinite-rich and an inertinite-rich sub-sample. The vitrinite-rich sam...

Full description

Saved in:
Bibliographic Details
Published in:International journal of coal science & technology 2019-12, Vol.6 (4), p.621-632
Main Authors: Moroeng, Ofentse M., Mhuka, Vimbai, Nindi, Mathew M., Roberts, R. James, Wagner, Nicola J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to compare iso-rank vitrinite-rich and inertinite-rich coal samples to understand the impact of coal-forming processes on pyrolysis chemistry. A medium rank C bituminous coal was density-fractionated to create a vitrinite-rich and an inertinite-rich sub-sample. The vitrinite-rich sample has 83 vol% total vitrinite (mineral-matter-free basis), whereas the inertinite-rich counterpart has 66 vol% total inertinite. The vitrinite-rich sample is dominated by collotelinite and collodetrinite. Fusinite, semifusinite, and inertodetrinite are the main macerals of the inertinite-rich sample. Molecular chemistry was assessed using a pyrolysis gas chromatograph (py-GC) equipped with a thermal desorption unit coupled to a time of flight mass spectrometer (MS) (py-GC/MS) and solid-state nuclear magnetic resonance ( 13 C CP-MAS SS NMR). The pyrolysis products of the coal samples are generally similar, comprised of low and high molecular weight alkanes, alkylbenzenes, alkylphenols, and alkyl-subtituted polycyclic aromatic hydrocarbons, although the vitrinite-rich sample is chemically more diverse. The lack of diversity exhibited by the inertinite-rich sample upon pyrolysis may be interpreted to suggest that major components were heated in their geologic history. Based on the 13 C CP-MAS SS NMR analysis, the inertinite-rich sample has a greater fraction of phenolics, reflected in the py-GC/MS results as substituted and unsubstituted derivatives. The greater abundance of phenolics for the inertinite-rich sample may suggest a fire-related origin for the dominant macerals of this sample. The C 2 -alkylbenzene isomers ( p -xylene and o -xylene) were detected in the pyrolysis products for the vitrinite-rich and inertinite-rich samples, though more abundant in the former. The presence of these in both samples likely reflects common source vegetation for the dominant vitrinite and inertinite macerals.
ISSN:2095-8293
2198-7823
DOI:10.1007/s40789-019-00274-3