Loading…

Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia

Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentine...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (8), p.1830
Main Authors: Tuvdendorj, Battsetseg, Zeng, Hongwei, Wu, Bingfang, Elnashar, Abdelrazek, Zhang, Miao, Tian, Fuyou, Nabil, Mohsen, Nanzad, Lkhagvadorj, Bulkhbai, Amanjol, Natsagdorj, Natsagsuren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-bfd2fcc43d51c06ebd21803f12f599c61cfb8b01f9605338fbfc12b4c35ba30f3
cites cdi_FETCH-LOGICAL-c291t-bfd2fcc43d51c06ebd21803f12f599c61cfb8b01f9605338fbfc12b4c35ba30f3
container_end_page
container_issue 8
container_start_page 1830
container_title Remote sensing (Basel, Switzerland)
container_volume 14
creator Tuvdendorj, Battsetseg
Zeng, Hongwei
Wu, Bingfang
Elnashar, Abdelrazek
Zhang, Miao
Tian, Fuyou
Nabil, Mohsen
Nanzad, Lkhagvadorj
Bulkhbai, Amanjol
Natsagdorj, Natsagsuren
description Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentinel-1 (S1) and Sentinel-2 (S2) images with the Google Earth Engine (GEE) environment. A total of three satellite data combination scenarios are set, including S1 alone, S2 alone, and the combination of S1 and S2. In order to avoid the impact of data gaps caused by clouds on crop classification, this study reconstructed the time series of S1 and S2 with a 10-day interval using the median composite method, linear moving interpolation, and Savitzky–Golay (SG) filter. Our results indicated that crop-type classification accuracy increased with the increase in data length to all three data combination scenarios. S2 alone has higher accuracy than S1 alone and the combination of S1 and S2. The crop-type map with the highest accuracy was generated using S2 data from 150 days of the year (DOY) (11 May) to 260 DOY (18 September). The OA and kappa were 0.93 and 0.78, respectively, and the F1-score for spring wheat and rapeseed were 0.96 and 0.80, respectively. The classification accuracy of the crop increased rapidly from 210 DOY (end of July) to 260 DOY (August to mid-September), and then it remained stable after 260 DOY. Based on our analysis, we filled the gap of the crop-type map with 10 m spatial resolution in northern Mongolia, revealing the best satellite combination and the best period for crop-type classification, which can benefit the achievement of sustainable development goals 2 (SDGs2).
doi_str_mv 10.3390/rs14081830
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c9c92b24ebe74d309199d4e010559f90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c9c92b24ebe74d309199d4e010559f90</doaj_id><sourcerecordid>2653036971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bfd2fcc43d51c06ebd21803f12f599c61cfb8b01f9605338fbfc12b4c35ba30f3</originalsourceid><addsrcrecordid>eNpNkcFqGzEQhpeSQIOTS55AkFth45G0u14di2kaQ1oHkpyFpB05MmvJHckHv303cWgzl_kZ_vlmhqmqaw63UiqYU-YN9LyX8KW6ELAQdSOUOPukv1ZXOW9hCim5guaiOj4i-UQ7Ex0yEwdWXpGt9yXszMhWseCGTAkpsuTZE8YSIo41nwv2HHZYPyEFzOwOTTnQJCYSW1Las-Vocg4-uFNziOx3oglNkf1KcZPGYC6rc2_GjFcfeVa93P14Xt7XD-ufq-X3h9oJxUtt_SC8c40cWu6gQzsI3oP0XPhWKddx521vgXvVQStl7613XNjGydYaCV7OqtWJOySz1XuaLqOjTibo90KijTZUghtRO-WUsKJBi4tmkKC4UkODwKFtlVcwsW5OrD2lPwfMRW_TgeK0vhZdK0F2asEn17eTy1HKmdD_m8pBv31K__-U_Av-QoXI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653036971</pqid></control><display><type>article</type><title>Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Tuvdendorj, Battsetseg ; Zeng, Hongwei ; Wu, Bingfang ; Elnashar, Abdelrazek ; Zhang, Miao ; Tian, Fuyou ; Nabil, Mohsen ; Nanzad, Lkhagvadorj ; Bulkhbai, Amanjol ; Natsagdorj, Natsagsuren</creator><creatorcontrib>Tuvdendorj, Battsetseg ; Zeng, Hongwei ; Wu, Bingfang ; Elnashar, Abdelrazek ; Zhang, Miao ; Tian, Fuyou ; Nabil, Mohsen ; Nanzad, Lkhagvadorj ; Bulkhbai, Amanjol ; Natsagdorj, Natsagsuren</creatorcontrib><description>Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentinel-1 (S1) and Sentinel-2 (S2) images with the Google Earth Engine (GEE) environment. A total of three satellite data combination scenarios are set, including S1 alone, S2 alone, and the combination of S1 and S2. In order to avoid the impact of data gaps caused by clouds on crop classification, this study reconstructed the time series of S1 and S2 with a 10-day interval using the median composite method, linear moving interpolation, and Savitzky–Golay (SG) filter. Our results indicated that crop-type classification accuracy increased with the increase in data length to all three data combination scenarios. S2 alone has higher accuracy than S1 alone and the combination of S1 and S2. The crop-type map with the highest accuracy was generated using S2 data from 150 days of the year (DOY) (11 May) to 260 DOY (18 September). The OA and kappa were 0.93 and 0.78, respectively, and the F1-score for spring wheat and rapeseed were 0.96 and 0.80, respectively. The classification accuracy of the crop increased rapidly from 210 DOY (end of July) to 260 DOY (August to mid-September), and then it remained stable after 260 DOY. Based on our analysis, we filled the gap of the crop-type map with 10 m spatial resolution in northern Mongolia, revealing the best satellite combination and the best period for crop-type classification, which can benefit the achievement of sustainable development goals 2 (SDGs2).</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14081830</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural policy ; Classification ; Corn ; crop-type classification ; Crops ; Data processing ; Food production ; Google Earth Engine ; Interpolation ; Land degradation ; northern Mongolia ; Optimization ; Phenology ; Precipitation ; random forest ; Rapeseed ; Regional development ; Remote sensing ; Satellites ; Sentinel-1/2 ; Spatial discrimination ; Spatial resolution ; Spring wheat ; Sustainable development ; Time series ; Wheat</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (8), p.1830</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bfd2fcc43d51c06ebd21803f12f599c61cfb8b01f9605338fbfc12b4c35ba30f3</citedby><cites>FETCH-LOGICAL-c291t-bfd2fcc43d51c06ebd21803f12f599c61cfb8b01f9605338fbfc12b4c35ba30f3</cites><orcidid>0000-0001-5546-365X ; 0000-0003-2362-6711 ; 0000-0001-9131-5099 ; 0000-0003-1758-8763 ; 0000-0001-8008-5670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2653036971/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2653036971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Tuvdendorj, Battsetseg</creatorcontrib><creatorcontrib>Zeng, Hongwei</creatorcontrib><creatorcontrib>Wu, Bingfang</creatorcontrib><creatorcontrib>Elnashar, Abdelrazek</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Tian, Fuyou</creatorcontrib><creatorcontrib>Nabil, Mohsen</creatorcontrib><creatorcontrib>Nanzad, Lkhagvadorj</creatorcontrib><creatorcontrib>Bulkhbai, Amanjol</creatorcontrib><creatorcontrib>Natsagdorj, Natsagsuren</creatorcontrib><title>Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia</title><title>Remote sensing (Basel, Switzerland)</title><description>Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentinel-1 (S1) and Sentinel-2 (S2) images with the Google Earth Engine (GEE) environment. A total of three satellite data combination scenarios are set, including S1 alone, S2 alone, and the combination of S1 and S2. In order to avoid the impact of data gaps caused by clouds on crop classification, this study reconstructed the time series of S1 and S2 with a 10-day interval using the median composite method, linear moving interpolation, and Savitzky–Golay (SG) filter. Our results indicated that crop-type classification accuracy increased with the increase in data length to all three data combination scenarios. S2 alone has higher accuracy than S1 alone and the combination of S1 and S2. The crop-type map with the highest accuracy was generated using S2 data from 150 days of the year (DOY) (11 May) to 260 DOY (18 September). The OA and kappa were 0.93 and 0.78, respectively, and the F1-score for spring wheat and rapeseed were 0.96 and 0.80, respectively. The classification accuracy of the crop increased rapidly from 210 DOY (end of July) to 260 DOY (August to mid-September), and then it remained stable after 260 DOY. Based on our analysis, we filled the gap of the crop-type map with 10 m spatial resolution in northern Mongolia, revealing the best satellite combination and the best period for crop-type classification, which can benefit the achievement of sustainable development goals 2 (SDGs2).</description><subject>Accuracy</subject><subject>Agricultural policy</subject><subject>Classification</subject><subject>Corn</subject><subject>crop-type classification</subject><subject>Crops</subject><subject>Data processing</subject><subject>Food production</subject><subject>Google Earth Engine</subject><subject>Interpolation</subject><subject>Land degradation</subject><subject>northern Mongolia</subject><subject>Optimization</subject><subject>Phenology</subject><subject>Precipitation</subject><subject>random forest</subject><subject>Rapeseed</subject><subject>Regional development</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sentinel-1/2</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spring wheat</subject><subject>Sustainable development</subject><subject>Time series</subject><subject>Wheat</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFqGzEQhpeSQIOTS55AkFth45G0u14di2kaQ1oHkpyFpB05MmvJHckHv303cWgzl_kZ_vlmhqmqaw63UiqYU-YN9LyX8KW6ELAQdSOUOPukv1ZXOW9hCim5guaiOj4i-UQ7Ex0yEwdWXpGt9yXszMhWseCGTAkpsuTZE8YSIo41nwv2HHZYPyEFzOwOTTnQJCYSW1Las-Vocg4-uFNziOx3oglNkf1KcZPGYC6rc2_GjFcfeVa93P14Xt7XD-ufq-X3h9oJxUtt_SC8c40cWu6gQzsI3oP0XPhWKddx521vgXvVQStl7613XNjGydYaCV7OqtWJOySz1XuaLqOjTibo90KijTZUghtRO-WUsKJBi4tmkKC4UkODwKFtlVcwsW5OrD2lPwfMRW_TgeK0vhZdK0F2asEn17eTy1HKmdD_m8pBv31K__-U_Av-QoXI</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Tuvdendorj, Battsetseg</creator><creator>Zeng, Hongwei</creator><creator>Wu, Bingfang</creator><creator>Elnashar, Abdelrazek</creator><creator>Zhang, Miao</creator><creator>Tian, Fuyou</creator><creator>Nabil, Mohsen</creator><creator>Nanzad, Lkhagvadorj</creator><creator>Bulkhbai, Amanjol</creator><creator>Natsagdorj, Natsagsuren</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5546-365X</orcidid><orcidid>https://orcid.org/0000-0003-2362-6711</orcidid><orcidid>https://orcid.org/0000-0001-9131-5099</orcidid><orcidid>https://orcid.org/0000-0003-1758-8763</orcidid><orcidid>https://orcid.org/0000-0001-8008-5670</orcidid></search><sort><creationdate>20220401</creationdate><title>Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia</title><author>Tuvdendorj, Battsetseg ; Zeng, Hongwei ; Wu, Bingfang ; Elnashar, Abdelrazek ; Zhang, Miao ; Tian, Fuyou ; Nabil, Mohsen ; Nanzad, Lkhagvadorj ; Bulkhbai, Amanjol ; Natsagdorj, Natsagsuren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bfd2fcc43d51c06ebd21803f12f599c61cfb8b01f9605338fbfc12b4c35ba30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agricultural policy</topic><topic>Classification</topic><topic>Corn</topic><topic>crop-type classification</topic><topic>Crops</topic><topic>Data processing</topic><topic>Food production</topic><topic>Google Earth Engine</topic><topic>Interpolation</topic><topic>Land degradation</topic><topic>northern Mongolia</topic><topic>Optimization</topic><topic>Phenology</topic><topic>Precipitation</topic><topic>random forest</topic><topic>Rapeseed</topic><topic>Regional development</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sentinel-1/2</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spring wheat</topic><topic>Sustainable development</topic><topic>Time series</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuvdendorj, Battsetseg</creatorcontrib><creatorcontrib>Zeng, Hongwei</creatorcontrib><creatorcontrib>Wu, Bingfang</creatorcontrib><creatorcontrib>Elnashar, Abdelrazek</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Tian, Fuyou</creatorcontrib><creatorcontrib>Nabil, Mohsen</creatorcontrib><creatorcontrib>Nanzad, Lkhagvadorj</creatorcontrib><creatorcontrib>Bulkhbai, Amanjol</creatorcontrib><creatorcontrib>Natsagdorj, Natsagsuren</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuvdendorj, Battsetseg</au><au>Zeng, Hongwei</au><au>Wu, Bingfang</au><au>Elnashar, Abdelrazek</au><au>Zhang, Miao</au><au>Tian, Fuyou</au><au>Nabil, Mohsen</au><au>Nanzad, Lkhagvadorj</au><au>Bulkhbai, Amanjol</au><au>Natsagdorj, Natsagsuren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1830</spage><pages>1830-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentinel-1 (S1) and Sentinel-2 (S2) images with the Google Earth Engine (GEE) environment. A total of three satellite data combination scenarios are set, including S1 alone, S2 alone, and the combination of S1 and S2. In order to avoid the impact of data gaps caused by clouds on crop classification, this study reconstructed the time series of S1 and S2 with a 10-day interval using the median composite method, linear moving interpolation, and Savitzky–Golay (SG) filter. Our results indicated that crop-type classification accuracy increased with the increase in data length to all three data combination scenarios. S2 alone has higher accuracy than S1 alone and the combination of S1 and S2. The crop-type map with the highest accuracy was generated using S2 data from 150 days of the year (DOY) (11 May) to 260 DOY (18 September). The OA and kappa were 0.93 and 0.78, respectively, and the F1-score for spring wheat and rapeseed were 0.96 and 0.80, respectively. The classification accuracy of the crop increased rapidly from 210 DOY (end of July) to 260 DOY (August to mid-September), and then it remained stable after 260 DOY. Based on our analysis, we filled the gap of the crop-type map with 10 m spatial resolution in northern Mongolia, revealing the best satellite combination and the best period for crop-type classification, which can benefit the achievement of sustainable development goals 2 (SDGs2).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14081830</doi><orcidid>https://orcid.org/0000-0001-5546-365X</orcidid><orcidid>https://orcid.org/0000-0003-2362-6711</orcidid><orcidid>https://orcid.org/0000-0001-9131-5099</orcidid><orcidid>https://orcid.org/0000-0003-1758-8763</orcidid><orcidid>https://orcid.org/0000-0001-8008-5670</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (8), p.1830
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c9c92b24ebe74d309199d4e010559f90
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Agricultural policy
Classification
Corn
crop-type classification
Crops
Data processing
Food production
Google Earth Engine
Interpolation
Land degradation
northern Mongolia
Optimization
Phenology
Precipitation
random forest
Rapeseed
Regional development
Remote sensing
Satellites
Sentinel-1/2
Spatial discrimination
Spatial resolution
Spring wheat
Sustainable development
Time series
Wheat
title Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20the%20Optimal%20Integration%20of%20Sentinel-1/2%20Time-Series%20Features%20for%20Crop%20Classification%20in%20Northern%20Mongolia&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Tuvdendorj,%20Battsetseg&rft.date=2022-04-01&rft.volume=14&rft.issue=8&rft.spage=1830&rft.pages=1830-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14081830&rft_dat=%3Cproquest_doaj_%3E2653036971%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-bfd2fcc43d51c06ebd21803f12f599c61cfb8b01f9605338fbfc12b4c35ba30f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653036971&rft_id=info:pmid/&rfr_iscdi=true