Loading…
Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring
Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily acti...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2017-10, Vol.17 (11), p.2448 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-68fc896a2a34bd308ba34931ee9562b08c5b537becc247f7bbe5d72b5410bdc03 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-68fc896a2a34bd308ba34931ee9562b08c5b537becc247f7bbe5d72b5410bdc03 |
container_end_page | |
container_issue | 11 |
container_start_page | 2448 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 17 |
creator | Everss-Villalba, Estrella Melgarejo-Meseguer, Francisco Manuel Blanco-Velasco, Manuel Gimeno-Blanes, Francisco Javier Sala-Pla, Salvador Rojo-Álvarez, José Luis García-Alberola, Arcadi |
description | Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters |
doi_str_mv | 10.3390/s17112448 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c9cdbd20b9dc4062a5d383ef1a0fdb43</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c9cdbd20b9dc4062a5d383ef1a0fdb43</doaj_id><sourcerecordid>1955635440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-68fc896a2a34bd308ba34931ee9562b08c5b537becc247f7bbe5d72b5410bdc03</originalsourceid><addsrcrecordid>eNpdkU1rVDEUhoMotlYX_gEJuNHF1XzfZCPIUGthqqjjOuTrjhnuJNMkd6T_3lunDq2rczh5eHjJC8BLjN5RqtD7inuMCWPyETjFjLBOEoIe39tPwLNaNwgRSql8Ck6IQkJSQU7B9y851gCvzK7CIRf4bTKpxWZa3AdokoeLMabozAh_hH0osd3AVf5tiq9wmdO6W4WyheeLC3iVU2y5xLR-Dp4MZqzhxd08Az8_na8Wn7vl14vLxcdl55hQrRNycFIJQwxl1lMk7bwoikNQXBCLpOOW094G5wjrh97awH1PLGcYWe8QPQOXB6_PZqN3JW5NudHZRP33kMtam9KiG4N2ynnrCbLKO4YEMdxTScOADRq8ZXR2fTi4dpPdBu9CasWMD6QPX1L8pdd5r3mPKcJ4Fry5E5R8PYXa9DZWF8bRpJCnqrHiXFDO2G3u1_-hmzyVNH_VTPW9VHNJYqbeHihXcq0lDMcwGOnb1vWx9Zl9dT_9kfxXM_0DzP-nRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977893336</pqid></control><display><type>article</type><title>Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Everss-Villalba, Estrella ; Melgarejo-Meseguer, Francisco Manuel ; Blanco-Velasco, Manuel ; Gimeno-Blanes, Francisco Javier ; Sala-Pla, Salvador ; Rojo-Álvarez, José Luis ; García-Alberola, Arcadi</creator><creatorcontrib>Everss-Villalba, Estrella ; Melgarejo-Meseguer, Francisco Manuel ; Blanco-Velasco, Manuel ; Gimeno-Blanes, Francisco Javier ; Sala-Pla, Salvador ; Rojo-Álvarez, José Luis ; García-Alberola, Arcadi</creatorcontrib><description>Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s17112448</identifier><identifier>PMID: 29068362</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Criteria ; ECG ; Electrocardiography ; Environmental monitoring ; external event recorder ; Holter ; long-term monitoring ; Noise ; noise bars ; noise clinical severity ; noise maps ; Noise measurement ; Noise monitoring ; Quality assessment ; Segments ; Signal quality</subject><ispartof>Sensors (Basel, Switzerland), 2017-10, Vol.17 (11), p.2448</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-68fc896a2a34bd308ba34931ee9562b08c5b537becc247f7bbe5d72b5410bdc03</citedby><cites>FETCH-LOGICAL-c469t-68fc896a2a34bd308ba34931ee9562b08c5b537becc247f7bbe5d72b5410bdc03</cites><orcidid>0000-0003-0426-8912 ; 0000-0001-7827-3197 ; 0000-0001-6593-1517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1977893336/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1977893336?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29068362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Everss-Villalba, Estrella</creatorcontrib><creatorcontrib>Melgarejo-Meseguer, Francisco Manuel</creatorcontrib><creatorcontrib>Blanco-Velasco, Manuel</creatorcontrib><creatorcontrib>Gimeno-Blanes, Francisco Javier</creatorcontrib><creatorcontrib>Sala-Pla, Salvador</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><creatorcontrib>García-Alberola, Arcadi</creatorcontrib><title>Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters.</description><subject>Criteria</subject><subject>ECG</subject><subject>Electrocardiography</subject><subject>Environmental monitoring</subject><subject>external event recorder</subject><subject>Holter</subject><subject>long-term monitoring</subject><subject>Noise</subject><subject>noise bars</subject><subject>noise clinical severity</subject><subject>noise maps</subject><subject>Noise measurement</subject><subject>Noise monitoring</subject><subject>Quality assessment</subject><subject>Segments</subject><subject>Signal quality</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1rVDEUhoMotlYX_gEJuNHF1XzfZCPIUGthqqjjOuTrjhnuJNMkd6T_3lunDq2rczh5eHjJC8BLjN5RqtD7inuMCWPyETjFjLBOEoIe39tPwLNaNwgRSql8Ck6IQkJSQU7B9y851gCvzK7CIRf4bTKpxWZa3AdokoeLMabozAh_hH0osd3AVf5tiq9wmdO6W4WyheeLC3iVU2y5xLR-Dp4MZqzhxd08Az8_na8Wn7vl14vLxcdl55hQrRNycFIJQwxl1lMk7bwoikNQXBCLpOOW094G5wjrh97awH1PLGcYWe8QPQOXB6_PZqN3JW5NudHZRP33kMtam9KiG4N2ynnrCbLKO4YEMdxTScOADRq8ZXR2fTi4dpPdBu9CasWMD6QPX1L8pdd5r3mPKcJ4Fry5E5R8PYXa9DZWF8bRpJCnqrHiXFDO2G3u1_-hmzyVNH_VTPW9VHNJYqbeHihXcq0lDMcwGOnb1vWx9Zl9dT_9kfxXM_0DzP-nRA</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Everss-Villalba, Estrella</creator><creator>Melgarejo-Meseguer, Francisco Manuel</creator><creator>Blanco-Velasco, Manuel</creator><creator>Gimeno-Blanes, Francisco Javier</creator><creator>Sala-Pla, Salvador</creator><creator>Rojo-Álvarez, José Luis</creator><creator>García-Alberola, Arcadi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0426-8912</orcidid><orcidid>https://orcid.org/0000-0001-7827-3197</orcidid><orcidid>https://orcid.org/0000-0001-6593-1517</orcidid></search><sort><creationdate>20171025</creationdate><title>Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring</title><author>Everss-Villalba, Estrella ; Melgarejo-Meseguer, Francisco Manuel ; Blanco-Velasco, Manuel ; Gimeno-Blanes, Francisco Javier ; Sala-Pla, Salvador ; Rojo-Álvarez, José Luis ; García-Alberola, Arcadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-68fc896a2a34bd308ba34931ee9562b08c5b537becc247f7bbe5d72b5410bdc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Criteria</topic><topic>ECG</topic><topic>Electrocardiography</topic><topic>Environmental monitoring</topic><topic>external event recorder</topic><topic>Holter</topic><topic>long-term monitoring</topic><topic>Noise</topic><topic>noise bars</topic><topic>noise clinical severity</topic><topic>noise maps</topic><topic>Noise measurement</topic><topic>Noise monitoring</topic><topic>Quality assessment</topic><topic>Segments</topic><topic>Signal quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Everss-Villalba, Estrella</creatorcontrib><creatorcontrib>Melgarejo-Meseguer, Francisco Manuel</creatorcontrib><creatorcontrib>Blanco-Velasco, Manuel</creatorcontrib><creatorcontrib>Gimeno-Blanes, Francisco Javier</creatorcontrib><creatorcontrib>Sala-Pla, Salvador</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><creatorcontrib>García-Alberola, Arcadi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Everss-Villalba, Estrella</au><au>Melgarejo-Meseguer, Francisco Manuel</au><au>Blanco-Velasco, Manuel</au><au>Gimeno-Blanes, Francisco Javier</au><au>Sala-Pla, Salvador</au><au>Rojo-Álvarez, José Luis</au><au>García-Alberola, Arcadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2017-10-25</date><risdate>2017</risdate><volume>17</volume><issue>11</issue><spage>2448</spage><pages>2448-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29068362</pmid><doi>10.3390/s17112448</doi><orcidid>https://orcid.org/0000-0003-0426-8912</orcidid><orcidid>https://orcid.org/0000-0001-7827-3197</orcidid><orcidid>https://orcid.org/0000-0001-6593-1517</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2017-10, Vol.17 (11), p.2448 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c9cdbd20b9dc4062a5d383ef1a0fdb43 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Criteria ECG Electrocardiography Environmental monitoring external event recorder Holter long-term monitoring Noise noise bars noise clinical severity noise maps Noise measurement Noise monitoring Quality assessment Segments Signal quality |
title | Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20Maps%20for%20Quantitative%20and%20Clinical%20Severity%20Towards%20Long-Term%20ECG%20Monitoring&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Everss-Villalba,%20Estrella&rft.date=2017-10-25&rft.volume=17&rft.issue=11&rft.spage=2448&rft.pages=2448-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s17112448&rft_dat=%3Cproquest_doaj_%3E1955635440%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-68fc896a2a34bd308ba34931ee9562b08c5b537becc247f7bbe5d72b5410bdc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977893336&rft_id=info:pmid/29068362&rfr_iscdi=true |