Loading…
Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data
Gene interaction networks are graphs in which nodes represent genes and edges represent functional interactions between them. These interactions can be at multiple levels, for instance, gene regulation, protein-protein interaction, or metabolic pathways. To analyse gene interaction networks at a lar...
Saved in:
Published in: | BMC bioinformatics 2024-10, Vol.25 (1), p.339-16, Article 339 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-70be955271d3fceba8a7993f8ee6c7a303b098fc61d4c42dd3f3f3d1f60d15183 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 339 |
container_title | BMC bioinformatics |
container_volume | 25 |
creator | Vo, Duong H T Thorne, Thomas |
description | Gene interaction networks are graphs in which nodes represent genes and edges represent functional interactions between them. These interactions can be at multiple levels, for instance, gene regulation, protein-protein interaction, or metabolic pathways. To analyse gene interaction networks at a large scale, gene co-expression network analysis is often applied on high-throughput gene expression data such as RNA sequencing data. With the advance in sequencing technology, expression of genes can be measured in individual cells. Single-cell RNA sequencing (scRNAseq) provides insights of cellular development, differentiation and characteristics at the transcriptomic level. High sparsity and high-dimensional data structures pose challenges in scRNAseq data analysis.
In this study, a sparse inverse covariance matrix estimation framework for scRNAseq data is developed to capture direct functional interactions between genes. Comparative analyses highlight high performance and fast computation of Stein-type shrinkage in high-dimensional data using simulated scRNAseq data. Data transformation approaches also show improvement in performance of shrinkage methods in non-Gaussian distributed data. Zero-inflated modelling of scRNAseq data based on a negative binomial distribution enhances shrinkage performance in zero-inflated data without interference on non zero-inflated count data.
The proposed framework broadens application of graphical model in scRNAseq analysis with flexibility in sparsity of count data resulting from dropout events, high performance, and fast computational time. Implementation of the framework is in a reproducible Snakemake workflow https://github.com/calathea24/ZINBGraphicalModel and R package ZINBStein https://github.com/calathea24/ZINBStein . |
doi_str_mv | 10.1186/s12859-024-05946-9 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c9ed544d0571402fa6c62c07f190bb5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813866024</galeid><doaj_id>oai_doaj_org_article_c9ed544d0571402fa6c62c07f190bb5c</doaj_id><sourcerecordid>A813866024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-70be955271d3fceba8a7993f8ee6c7a303b098fc61d4c42dd3f3f3d1f60d15183</originalsourceid><addsrcrecordid>eNptkl1vFCEUhidGY2v1D3hhJvGmXkzlc2a4MptG7SaNJm29JgwcpmxnoQLrx7-X2W1r1xguIC_PeYGXU1WvMTrBuG_fJ0x6LhpEWIO4YG0jnlSHmHW4IRjxp4_WB9WLlFYI4a5H_Hl1QAtNKOOH1dXldXT-Ro1QQ8purbILvg62HsFD7XyGqPRW85B_hniTilgn58cJGg3TVF98WdQJvm_A66LWRmX1snpm1ZTg1d18VH379PHq9Kw5__p5ebo4bzSjPDcdGkBwTjpsqNUwqF51QlDbA7S6UxTRAYne6hYbphkxhSrDYNsigznu6VG13PmaoFbyNpbrx98yKCe3QoijVDE7PYHUAgxnzCDeYYaIVa1uiUadxQINA9fF68PO63YzrMFo8Dmqac90f8e7azmGHxKXq3DSk-JwfOcQQ4kjZbl2aY5IeQibJCkm5cMQ6mb07T_oKmyiL1nNVMswQYL-pUZVXuC8DeVgPZvKRY9p37bl6wt18h-qDANrp4MH64q-V_Bur6AwGX7lUW1SksvLi32W7FgdQ0oR7EMgGMm5CeWuCWWB5bYJpShFbx5H-VBy33X0D0XK1WA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126412093</pqid></control><display><type>article</type><title>Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data</title><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Vo, Duong H T ; Thorne, Thomas</creator><creatorcontrib>Vo, Duong H T ; Thorne, Thomas</creatorcontrib><description>Gene interaction networks are graphs in which nodes represent genes and edges represent functional interactions between them. These interactions can be at multiple levels, for instance, gene regulation, protein-protein interaction, or metabolic pathways. To analyse gene interaction networks at a large scale, gene co-expression network analysis is often applied on high-throughput gene expression data such as RNA sequencing data. With the advance in sequencing technology, expression of genes can be measured in individual cells. Single-cell RNA sequencing (scRNAseq) provides insights of cellular development, differentiation and characteristics at the transcriptomic level. High sparsity and high-dimensional data structures pose challenges in scRNAseq data analysis.
In this study, a sparse inverse covariance matrix estimation framework for scRNAseq data is developed to capture direct functional interactions between genes. Comparative analyses highlight high performance and fast computation of Stein-type shrinkage in high-dimensional data using simulated scRNAseq data. Data transformation approaches also show improvement in performance of shrinkage methods in non-Gaussian distributed data. Zero-inflated modelling of scRNAseq data based on a negative binomial distribution enhances shrinkage performance in zero-inflated data without interference on non zero-inflated count data.
The proposed framework broadens application of graphical model in scRNAseq analysis with flexibility in sparsity of count data resulting from dropout events, high performance, and fast computational time. Implementation of the framework is in a reproducible Snakemake workflow https://github.com/calathea24/ZINBGraphicalModel and R package ZINBStein https://github.com/calathea24/ZINBStein .</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-024-05946-9</identifier><identifier>PMID: 39462345</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Cell differentiation ; Cellular structure ; Comparative analysis ; Computing time ; Covariance matrix ; Covariance matrix shrinkage ; Data analysis ; Data mining ; Data structures ; Dimensional analysis ; Evaluation ; Gene expression ; Gene Expression Profiling - methods ; Gene network ; Gene regulation ; Gene Regulatory Networks ; Gene sequencing ; Genes ; Humans ; Metabolic pathways ; Network analysis ; Normal distribution ; Protein interaction ; Protein-protein interactions ; Proteins ; Random variables ; Ribonucleic acid ; RNA ; RNA sequencing ; Sequence Analysis, RNA - methods ; Single-Cell Analysis - methods ; Single-cell RNA-seq analysis ; Transcriptomics ; Workflow</subject><ispartof>BMC bioinformatics, 2024-10, Vol.25 (1), p.339-16, Article 339</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-70be955271d3fceba8a7993f8ee6c7a303b098fc61d4c42dd3f3f3d1f60d15183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126412093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39462345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vo, Duong H T</creatorcontrib><creatorcontrib>Thorne, Thomas</creatorcontrib><title>Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Gene interaction networks are graphs in which nodes represent genes and edges represent functional interactions between them. These interactions can be at multiple levels, for instance, gene regulation, protein-protein interaction, or metabolic pathways. To analyse gene interaction networks at a large scale, gene co-expression network analysis is often applied on high-throughput gene expression data such as RNA sequencing data. With the advance in sequencing technology, expression of genes can be measured in individual cells. Single-cell RNA sequencing (scRNAseq) provides insights of cellular development, differentiation and characteristics at the transcriptomic level. High sparsity and high-dimensional data structures pose challenges in scRNAseq data analysis.
In this study, a sparse inverse covariance matrix estimation framework for scRNAseq data is developed to capture direct functional interactions between genes. Comparative analyses highlight high performance and fast computation of Stein-type shrinkage in high-dimensional data using simulated scRNAseq data. Data transformation approaches also show improvement in performance of shrinkage methods in non-Gaussian distributed data. Zero-inflated modelling of scRNAseq data based on a negative binomial distribution enhances shrinkage performance in zero-inflated data without interference on non zero-inflated count data.
The proposed framework broadens application of graphical model in scRNAseq analysis with flexibility in sparsity of count data resulting from dropout events, high performance, and fast computational time. Implementation of the framework is in a reproducible Snakemake workflow https://github.com/calathea24/ZINBGraphicalModel and R package ZINBStein https://github.com/calathea24/ZINBStein .</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Cell differentiation</subject><subject>Cellular structure</subject><subject>Comparative analysis</subject><subject>Computing time</subject><subject>Covariance matrix</subject><subject>Covariance matrix shrinkage</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Dimensional analysis</subject><subject>Evaluation</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene network</subject><subject>Gene regulation</subject><subject>Gene Regulatory Networks</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Humans</subject><subject>Metabolic pathways</subject><subject>Network analysis</subject><subject>Normal distribution</subject><subject>Protein interaction</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Random variables</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>Single-cell RNA-seq analysis</subject><subject>Transcriptomics</subject><subject>Workflow</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1vFCEUhidGY2v1D3hhJvGmXkzlc2a4MptG7SaNJm29JgwcpmxnoQLrx7-X2W1r1xguIC_PeYGXU1WvMTrBuG_fJ0x6LhpEWIO4YG0jnlSHmHW4IRjxp4_WB9WLlFYI4a5H_Hl1QAtNKOOH1dXldXT-Ro1QQ8purbILvg62HsFD7XyGqPRW85B_hniTilgn58cJGg3TVF98WdQJvm_A66LWRmX1snpm1ZTg1d18VH379PHq9Kw5__p5ebo4bzSjPDcdGkBwTjpsqNUwqF51QlDbA7S6UxTRAYne6hYbphkxhSrDYNsigznu6VG13PmaoFbyNpbrx98yKCe3QoijVDE7PYHUAgxnzCDeYYaIVa1uiUadxQINA9fF68PO63YzrMFo8Dmqac90f8e7azmGHxKXq3DSk-JwfOcQQ4kjZbl2aY5IeQibJCkm5cMQ6mb07T_oKmyiL1nNVMswQYL-pUZVXuC8DeVgPZvKRY9p37bl6wt18h-qDANrp4MH64q-V_Bur6AwGX7lUW1SksvLi32W7FgdQ0oR7EMgGMm5CeWuCWWB5bYJpShFbx5H-VBy33X0D0XK1WA</recordid><startdate>20241026</startdate><enddate>20241026</enddate><creator>Vo, Duong H T</creator><creator>Thorne, Thomas</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241026</creationdate><title>Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data</title><author>Vo, Duong H T ; Thorne, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-70be955271d3fceba8a7993f8ee6c7a303b098fc61d4c42dd3f3f3d1f60d15183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Cell differentiation</topic><topic>Cellular structure</topic><topic>Comparative analysis</topic><topic>Computing time</topic><topic>Covariance matrix</topic><topic>Covariance matrix shrinkage</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Dimensional analysis</topic><topic>Evaluation</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene network</topic><topic>Gene regulation</topic><topic>Gene Regulatory Networks</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Humans</topic><topic>Metabolic pathways</topic><topic>Network analysis</topic><topic>Normal distribution</topic><topic>Protein interaction</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Random variables</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>Single-cell RNA-seq analysis</topic><topic>Transcriptomics</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vo, Duong H T</creatorcontrib><creatorcontrib>Thorne, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, Duong H T</au><au>Thorne, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2024-10-26</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>339</spage><epage>16</epage><pages>339-16</pages><artnum>339</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Gene interaction networks are graphs in which nodes represent genes and edges represent functional interactions between them. These interactions can be at multiple levels, for instance, gene regulation, protein-protein interaction, or metabolic pathways. To analyse gene interaction networks at a large scale, gene co-expression network analysis is often applied on high-throughput gene expression data such as RNA sequencing data. With the advance in sequencing technology, expression of genes can be measured in individual cells. Single-cell RNA sequencing (scRNAseq) provides insights of cellular development, differentiation and characteristics at the transcriptomic level. High sparsity and high-dimensional data structures pose challenges in scRNAseq data analysis.
In this study, a sparse inverse covariance matrix estimation framework for scRNAseq data is developed to capture direct functional interactions between genes. Comparative analyses highlight high performance and fast computation of Stein-type shrinkage in high-dimensional data using simulated scRNAseq data. Data transformation approaches also show improvement in performance of shrinkage methods in non-Gaussian distributed data. Zero-inflated modelling of scRNAseq data based on a negative binomial distribution enhances shrinkage performance in zero-inflated data without interference on non zero-inflated count data.
The proposed framework broadens application of graphical model in scRNAseq analysis with flexibility in sparsity of count data resulting from dropout events, high performance, and fast computational time. Implementation of the framework is in a reproducible Snakemake workflow https://github.com/calathea24/ZINBGraphicalModel and R package ZINBStein https://github.com/calathea24/ZINBStein .</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39462345</pmid><doi>10.1186/s12859-024-05946-9</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2024-10, Vol.25 (1), p.339-16, Article 339 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c9ed544d0571402fa6c62c07f190bb5c |
source | PubMed Central (Open Access); ProQuest - Publicly Available Content Database |
subjects | Algorithms Analysis Cell differentiation Cellular structure Comparative analysis Computing time Covariance matrix Covariance matrix shrinkage Data analysis Data mining Data structures Dimensional analysis Evaluation Gene expression Gene Expression Profiling - methods Gene network Gene regulation Gene Regulatory Networks Gene sequencing Genes Humans Metabolic pathways Network analysis Normal distribution Protein interaction Protein-protein interactions Proteins Random variables Ribonucleic acid RNA RNA sequencing Sequence Analysis, RNA - methods Single-Cell Analysis - methods Single-cell RNA-seq analysis Transcriptomics Workflow |
title | Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shrinkage%20estimation%20of%20gene%20interaction%20networks%20in%20single-cell%20RNA%20sequencing%20data&rft.jtitle=BMC%20bioinformatics&rft.au=Vo,%20Duong%20H%20T&rft.date=2024-10-26&rft.volume=25&rft.issue=1&rft.spage=339&rft.epage=16&rft.pages=339-16&rft.artnum=339&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-024-05946-9&rft_dat=%3Cgale_doaj_%3EA813866024%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-70be955271d3fceba8a7993f8ee6c7a303b098fc61d4c42dd3f3f3d1f60d15183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126412093&rft_id=info:pmid/39462345&rft_galeid=A813866024&rfr_iscdi=true |