Loading…
On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions
This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the...
Saved in:
Published in: | Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2024-12, Vol.12, p.100925, Article 100925 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1665-2bb3f8376b54f9a7a42d046236cad8c7a535aa65065fcf0877f812eb1d2b4ee63 |
container_end_page | |
container_issue | |
container_start_page | 100925 |
container_title | Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters |
container_volume | 12 |
creator | Desova, Begüm Çalışkan Polat, Mustafa |
description | This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the blow-up result. |
doi_str_mv | 10.1016/j.padiff.2024.100925 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c9fd1558bf80471da7a9cdbce120c09e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666818124003115</els_id><doaj_id>oai_doaj_org_article_c9fd1558bf80471da7a9cdbce120c09e</doaj_id><sourcerecordid>S2666818124003115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1665-2bb3f8376b54f9a7a42d046236cad8c7a535aa65065fcf0877f812eb1d2b4ee63</originalsourceid><addsrcrecordid>eNp9kc9OAyEQxjdGE436Bh54ga3ALuzuxcQ0_mli0oueyQCDpVmXCtvWvr20NcaTJ8g3zO-b4SuKG0YnjDJ5u5yswHrnJpzyOku04-KkuOBSyrJlLTv9cz8vrlNaUkq5YBXrqotiMx_IuEDSBwM9wS-fRhwMEhgs0X3YlusVSaFfjz4MiYyBAPlcQ_Jl7weESLQvF7sVRh16bwjm2v4l2fpxQexugI-s6rAeLMQdMWGw_kC6Ks4c9Amvf87L4u3x4XX6XL7Mn2bT-5fSMClFybWuXFs1UovaddBAzS2tJa-kAduaBkQlAKSgUjjjaNs0rmUcNbNc14iyuixmR64NsFSr6D_yHCqAVwchxHcFcfSmR2U6Z5kQrXYtrRtms1tnrDbIODW0w8yqjywTQ0oR3S-PUbWPQmWHQxRqH4U6RpHb7o5tmPfceIwqGb__Y-sjmjEP4v8HfAO1j5Xs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions</title><source>ScienceDirect Journals</source><creator>Desova, Begüm Çalışkan ; Polat, Mustafa</creator><creatorcontrib>Desova, Begüm Çalışkan ; Polat, Mustafa</creatorcontrib><description>This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the blow-up result.</description><identifier>ISSN: 2666-8181</identifier><identifier>EISSN: 2666-8181</identifier><identifier>DOI: 10.1016/j.padiff.2024.100925</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bi-hyperbolic quasi-linear equations ; Blow-up ; Dynamic boundary condition ; Maximal monotone operator theory</subject><ispartof>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2024-12, Vol.12, p.100925, Article 100925</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1665-2bb3f8376b54f9a7a42d046236cad8c7a535aa65065fcf0877f812eb1d2b4ee63</cites><orcidid>0000-0001-9048-0500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666818124003115$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45779</link.rule.ids></links><search><creatorcontrib>Desova, Begüm Çalışkan</creatorcontrib><creatorcontrib>Polat, Mustafa</creatorcontrib><title>On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions</title><title>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</title><description>This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the blow-up result.</description><subject>Bi-hyperbolic quasi-linear equations</subject><subject>Blow-up</subject><subject>Dynamic boundary condition</subject><subject>Maximal monotone operator theory</subject><issn>2666-8181</issn><issn>2666-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9OAyEQxjdGE436Bh54ga3ALuzuxcQ0_mli0oueyQCDpVmXCtvWvr20NcaTJ8g3zO-b4SuKG0YnjDJ5u5yswHrnJpzyOku04-KkuOBSyrJlLTv9cz8vrlNaUkq5YBXrqotiMx_IuEDSBwM9wS-fRhwMEhgs0X3YlusVSaFfjz4MiYyBAPlcQ_Jl7weESLQvF7sVRh16bwjm2v4l2fpxQexugI-s6rAeLMQdMWGw_kC6Ks4c9Amvf87L4u3x4XX6XL7Mn2bT-5fSMClFybWuXFs1UovaddBAzS2tJa-kAduaBkQlAKSgUjjjaNs0rmUcNbNc14iyuixmR64NsFSr6D_yHCqAVwchxHcFcfSmR2U6Z5kQrXYtrRtms1tnrDbIODW0w8yqjywTQ0oR3S-PUbWPQmWHQxRqH4U6RpHb7o5tmPfceIwqGb__Y-sjmjEP4v8HfAO1j5Xs</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Desova, Begüm Çalışkan</creator><creator>Polat, Mustafa</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9048-0500</orcidid></search><sort><creationdate>202412</creationdate><title>On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions</title><author>Desova, Begüm Çalışkan ; Polat, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1665-2bb3f8376b54f9a7a42d046236cad8c7a535aa65065fcf0877f812eb1d2b4ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bi-hyperbolic quasi-linear equations</topic><topic>Blow-up</topic><topic>Dynamic boundary condition</topic><topic>Maximal monotone operator theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desova, Begüm Çalışkan</creatorcontrib><creatorcontrib>Polat, Mustafa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desova, Begüm Çalışkan</au><au>Polat, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions</atitle><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle><date>2024-12</date><risdate>2024</risdate><volume>12</volume><spage>100925</spage><pages>100925-</pages><artnum>100925</artnum><issn>2666-8181</issn><eissn>2666-8181</eissn><abstract>This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the blow-up result.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.padiff.2024.100925</doi><orcidid>https://orcid.org/0000-0001-9048-0500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-8181 |
ispartof | Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2024-12, Vol.12, p.100925, Article 100925 |
issn | 2666-8181 2666-8181 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c9fd1558bf80471da7a9cdbce120c09e |
source | ScienceDirect Journals |
subjects | Bi-hyperbolic quasi-linear equations Blow-up Dynamic boundary condition Maximal monotone operator theory |
title | On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20local%20existence%20and%20blow-up%20solutions%20to%20a%20quasi-linear%20bi-hyperbolic%20equation%20with%20dynamic%20boundary%20conditions&rft.jtitle=Partial%20differential%20equations%20in%20applied%20mathematics%20:%20a%20spin-off%20of%20Applied%20Mathematics%20Letters&rft.au=Desova,%20Beg%C3%BCm%20%C3%87al%C4%B1%C5%9Fkan&rft.date=2024-12&rft.volume=12&rft.spage=100925&rft.pages=100925-&rft.artnum=100925&rft.issn=2666-8181&rft.eissn=2666-8181&rft_id=info:doi/10.1016/j.padiff.2024.100925&rft_dat=%3Celsevier_doaj_%3ES2666818124003115%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1665-2bb3f8376b54f9a7a42d046236cad8c7a535aa65065fcf0877f812eb1d2b4ee63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |