Loading…
Nitrogen Atom-Doped Layered Graphene for High-Performance CO2/N2 Adsorption and Separation
The development of high-performance CO2 capture and separation adsorbents is critical to alleviate the deteriorating environmental issues. Herein, N atom-doped layered graphene (N-MGN) was introduced to form triazine and pyridine as potential CO2 capture and separation adsorbents via regulation of i...
Saved in:
Published in: | Energies (Basel) 2022-05, Vol.15 (10), p.3713 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of high-performance CO2 capture and separation adsorbents is critical to alleviate the deteriorating environmental issues. Herein, N atom-doped layered graphene (N-MGN) was introduced to form triazine and pyridine as potential CO2 capture and separation adsorbents via regulation of interlayer spacings. Structural analyses showed that accessible surface area of the N-MGN is 2521.72 m2 g−1, the porosity increased from 9.43% to 84.86%. At ultra-low pressure, N-MGN_6.8 have exhibited a high CO2 adsorption capacity of 10.59 mmol/g at 298 K and 0.4 bar. At high pressure, the absolute adsorption capacities of CO2 in N-MGN_17.0 (40.16 mmol g−1) at 7.0 MPa and 298 K are much larger than that of N-doping slit pore. At 298 K and 1.0 bar, the highest selectivity of CO2 over N2 reached up to ~133 in N-MGN_6.8. The research shows that N doping can effectively improve the adsorption and separation capacity of CO2 and N2 in layered graphene, and the interlayer spacing has an important influence on the adsorption capacity of CO2/N2. The adsorption heat and relative concentration curves further confirmed that the layered graphene with an interlayer spacing of 6.8 Å has the best adsorption and separation ability of CO2 and N2 under low pressure. Under high pressure, the layered graphene with the interlayer spacing of 17.0 Å has the best adsorption and separation ability of CO2 and N2. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15103713 |