Loading…

Data-driven analysis of the real-time electricity price considering wind power effect

The electricity price is the sensitive signal of the supply-demand balance and some other market incidents. The analysis of the price data can provide plenty of the market information. It is helpful for the participants to understand the market and improve future strategies. However, most of the for...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports 2020-02, Vol.6 (2), p.452-459
Main Authors: Yang, Shengjie, Xu, Xuesong, Liu, Jiangang, Jiang, Weijin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-3d81108e3021c4733d1861630a12478da93542927d4f2ffe58ec21869433a6d43
cites cdi_FETCH-LOGICAL-c489t-3d81108e3021c4733d1861630a12478da93542927d4f2ffe58ec21869433a6d43
container_end_page 459
container_issue 2
container_start_page 452
container_title Energy reports
container_volume 6
creator Yang, Shengjie
Xu, Xuesong
Liu, Jiangang
Jiang, Weijin
description The electricity price is the sensitive signal of the supply-demand balance and some other market incidents. The analysis of the price data can provide plenty of the market information. It is helpful for the participants to understand the market and improve future strategies. However, most of the forecast models eliminate the details to reduce the structural risk for generality. In this paper, the data-driven analysis is proposed to explore the PJM electricity price in detail. The price time series is decomposed into different components. Each component is modeled and tested by the statistical method to illustrate the hidden pattern of the fluctuation, so that there can be reasonable interpretation about the market. The relationship between the price and the wind power is numerically detected through the heterogeneity of the price time series. The paper demonstrates the data-driven method to mine information and achieve the analysis of electricity market.
doi_str_mv 10.1016/j.egyr.2019.11.102
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ca109604848742e3899b70ee750b9a03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352484719309771</els_id><doaj_id>oai_doaj_org_article_ca109604848742e3899b70ee750b9a03</doaj_id><sourcerecordid>S2352484719309771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-3d81108e3021c4733d1861630a12478da93542927d4f2ffe58ec21869433a6d43</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYsoOOb-gCDkD3Tmq20C3sj8Ggy8cdchS97OlK4dSdnov_edE_HKqxMO5xzePFl2y-icUVbeN3PYjnHOKdNzxtDjF9mEi4LnUsnq8s_7Opul1FCKSU5lKSbZ-skONvcxHKAjtrPtmEIifU2GTyARbJsPYQcEWnBDDC4MI9mjAnF9l4KHGLotOYbOk31_hEigrjF5k13Vtk0w-9Fptn55_li85av31-XicZU7qfSQC68YowoE5czJSgjPVMlKQS3jslLealFIrnnlZc1xuFDgOEa0FMKWXopptjzv-t42Bg_b2Tia3gbzbfRxa2wcgmvBOMuoLilSUJXkIJTWm4oCVAXdaEsFbvHzlot9ShHq3z1GzYmzacyJszlxNoyhx7H0cC4B_vIQIJrkAnQOfIjIAc8I_9fvfuqIMyRzkjT0GJJCI4gvBUOOmQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-driven analysis of the real-time electricity price considering wind power effect</title><source>ScienceDirect®</source><creator>Yang, Shengjie ; Xu, Xuesong ; Liu, Jiangang ; Jiang, Weijin</creator><creatorcontrib>Yang, Shengjie ; Xu, Xuesong ; Liu, Jiangang ; Jiang, Weijin</creatorcontrib><description>The electricity price is the sensitive signal of the supply-demand balance and some other market incidents. The analysis of the price data can provide plenty of the market information. It is helpful for the participants to understand the market and improve future strategies. However, most of the forecast models eliminate the details to reduce the structural risk for generality. In this paper, the data-driven analysis is proposed to explore the PJM electricity price in detail. The price time series is decomposed into different components. Each component is modeled and tested by the statistical method to illustrate the hidden pattern of the fluctuation, so that there can be reasonable interpretation about the market. The relationship between the price and the wind power is numerically detected through the heterogeneity of the price time series. The paper demonstrates the data-driven method to mine information and achieve the analysis of electricity market.</description><identifier>ISSN: 2352-4847</identifier><identifier>EISSN: 2352-4847</identifier><identifier>DOI: 10.1016/j.egyr.2019.11.102</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Electricity market ; Heterogeneous volatility ; Real-time price ; Time series ; Wind power</subject><ispartof>Energy reports, 2020-02, Vol.6 (2), p.452-459</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-3d81108e3021c4733d1861630a12478da93542927d4f2ffe58ec21869433a6d43</citedby><cites>FETCH-LOGICAL-c489t-3d81108e3021c4733d1861630a12478da93542927d4f2ffe58ec21869433a6d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352484719309771$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Yang, Shengjie</creatorcontrib><creatorcontrib>Xu, Xuesong</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Jiang, Weijin</creatorcontrib><title>Data-driven analysis of the real-time electricity price considering wind power effect</title><title>Energy reports</title><description>The electricity price is the sensitive signal of the supply-demand balance and some other market incidents. The analysis of the price data can provide plenty of the market information. It is helpful for the participants to understand the market and improve future strategies. However, most of the forecast models eliminate the details to reduce the structural risk for generality. In this paper, the data-driven analysis is proposed to explore the PJM electricity price in detail. The price time series is decomposed into different components. Each component is modeled and tested by the statistical method to illustrate the hidden pattern of the fluctuation, so that there can be reasonable interpretation about the market. The relationship between the price and the wind power is numerically detected through the heterogeneity of the price time series. The paper demonstrates the data-driven method to mine information and achieve the analysis of electricity market.</description><subject>Electricity market</subject><subject>Heterogeneous volatility</subject><subject>Real-time price</subject><subject>Time series</subject><subject>Wind power</subject><issn>2352-4847</issn><issn>2352-4847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kF1LwzAYhYsoOOb-gCDkD3Tmq20C3sj8Ggy8cdchS97OlK4dSdnov_edE_HKqxMO5xzePFl2y-icUVbeN3PYjnHOKdNzxtDjF9mEi4LnUsnq8s_7Opul1FCKSU5lKSbZ-skONvcxHKAjtrPtmEIifU2GTyARbJsPYQcEWnBDDC4MI9mjAnF9l4KHGLotOYbOk31_hEigrjF5k13Vtk0w-9Fptn55_li85av31-XicZU7qfSQC68YowoE5czJSgjPVMlKQS3jslLealFIrnnlZc1xuFDgOEa0FMKWXopptjzv-t42Bg_b2Tia3gbzbfRxa2wcgmvBOMuoLilSUJXkIJTWm4oCVAXdaEsFbvHzlot9ShHq3z1GzYmzacyJszlxNoyhx7H0cC4B_vIQIJrkAnQOfIjIAc8I_9fvfuqIMyRzkjT0GJJCI4gvBUOOmQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Yang, Shengjie</creator><creator>Xu, Xuesong</creator><creator>Liu, Jiangang</creator><creator>Jiang, Weijin</creator><general>Elsevier</general><general>Elsevier Ltd</general><scope>OT2</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200201</creationdate><title>Data-driven analysis of the real-time electricity price considering wind power effect</title><author>Yang, Shengjie ; Xu, Xuesong ; Liu, Jiangang ; Jiang, Weijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-3d81108e3021c4733d1861630a12478da93542927d4f2ffe58ec21869433a6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electricity market</topic><topic>Heterogeneous volatility</topic><topic>Real-time price</topic><topic>Time series</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shengjie</creatorcontrib><creatorcontrib>Xu, Xuesong</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Jiang, Weijin</creatorcontrib><collection>EconStor</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Energy reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shengjie</au><au>Xu, Xuesong</au><au>Liu, Jiangang</au><au>Jiang, Weijin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven analysis of the real-time electricity price considering wind power effect</atitle><jtitle>Energy reports</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>452</spage><epage>459</epage><pages>452-459</pages><issn>2352-4847</issn><eissn>2352-4847</eissn><abstract>The electricity price is the sensitive signal of the supply-demand balance and some other market incidents. The analysis of the price data can provide plenty of the market information. It is helpful for the participants to understand the market and improve future strategies. However, most of the forecast models eliminate the details to reduce the structural risk for generality. In this paper, the data-driven analysis is proposed to explore the PJM electricity price in detail. The price time series is decomposed into different components. Each component is modeled and tested by the statistical method to illustrate the hidden pattern of the fluctuation, so that there can be reasonable interpretation about the market. The relationship between the price and the wind power is numerically detected through the heterogeneity of the price time series. The paper demonstrates the data-driven method to mine information and achieve the analysis of electricity market.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.egyr.2019.11.102</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-4847
ispartof Energy reports, 2020-02, Vol.6 (2), p.452-459
issn 2352-4847
2352-4847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ca109604848742e3899b70ee750b9a03
source ScienceDirect®
subjects Electricity market
Heterogeneous volatility
Real-time price
Time series
Wind power
title Data-driven analysis of the real-time electricity price considering wind power effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20analysis%20of%20the%20real-time%20electricity%20price%20considering%20wind%20power%20effect&rft.jtitle=Energy%20reports&rft.au=Yang,%20Shengjie&rft.date=2020-02-01&rft.volume=6&rft.issue=2&rft.spage=452&rft.epage=459&rft.pages=452-459&rft.issn=2352-4847&rft.eissn=2352-4847&rft_id=info:doi/10.1016/j.egyr.2019.11.102&rft_dat=%3Celsevier_doaj_%3ES2352484719309771%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-3d81108e3021c4733d1861630a12478da93542927d4f2ffe58ec21869433a6d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true