Loading…
Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture
Characterizing likelihood of response to neoadjuvant chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is an important yet unmet challenge. In this study, a machine-learning framework is developed using imaging of biopsy pathology specimens to generate models of likelihood of NAC response....
Saved in:
Published in: | Cell reports. Medicine 2021-09, Vol.2 (9), p.100382, Article 100382 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-8ffc001aac014673262fbee5e45f6f77e99c0c8d69ea592b0f352b2153fac5e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-8ffc001aac014673262fbee5e45f6f77e99c0c8d69ea592b0f352b2153fac5e13 |
container_end_page | |
container_issue | 9 |
container_start_page | 100382 |
container_title | Cell reports. Medicine |
container_volume | 2 |
creator | Mi, Haoyang Bivalacqua, Trinity J. Kates, Max Seiler, Roland Black, Peter C. Popel, Aleksander S. Baras, Alexander S. |
description | Characterizing likelihood of response to neoadjuvant chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is an important yet unmet challenge. In this study, a machine-learning framework is developed using imaging of biopsy pathology specimens to generate models of likelihood of NAC response. Developed using cross-validation (evaluable N = 66) and an independent validation cohort (evaluable N = 56), our models achieve promising results (65%–73% accuracy). Interestingly, one model—using features derived from hematoxylin and eosin (H&E)-stained tissues in conjunction with clinico-demographic features—is able to stratify the cohort into likely responders in cross-validation and the validation cohort (response rate of 65% for predicted responder compared with the 41% baseline response rate in the validation cohort). The results suggest that computational approaches applied to routine pathology specimens of MIBC can capture differences between responders and non-responders to NAC and should therefore be considered in the future design of precision oncology for MIBC.
[Display omitted]
Using imaging of pathology samples to predict chemotherapy response in bladder cancerMulti-modal integration of cell nuclear and tissue architectural featuresModels using H&E images and basic clinical features able to enrich for respondersPredictive features suggest response-modulating factors in tumor microenvironment
Using multi-modal machine-learning leveraging features from digital pathology, Mi et al. develop models to predict response to chemotherapy in muscle-invasive bladder cancer. Models using handcrafted features derived from conventional H&E TMAs in conjunction with basic clinico-demographic features significantly stratify likelihood of response in both discovery and independent validation cohorts. |
doi_str_mv | 10.1016/j.xcrm.2021.100382 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ca1bf475605d4b7e9cb2e79a6b838033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666379121002366</els_id><doaj_id>oai_doaj_org_article_ca1bf475605d4b7e9cb2e79a6b838033</doaj_id><sourcerecordid>2580696326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-8ffc001aac014673262fbee5e45f6f77e99c0c8d69ea592b0f352b2153fac5e13</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAfOSyxR-xk0gICVV8VKoEBzhbE3u861ViL7az6v4HfjRetlTtBV_GGr9-PJ55m-Y1o1eMMvVue3Vn0nzFKWc1QUXPnzXnXCm1Et3Anj_anzWXOW8ppVwy1gv6sjkTreJ1yfPm9_eE1pvi90jmaHHKJDqSMO9iyEhKJAEj2O2yh1CI2eAcywYT7A7EBzIv2Uy48mEP-UgYJ7AWEzEQTA1L9mFNwlI1kCo-7TZxiusDgWBJ8TkvSCCZjS9oypLwVfPCwZTx8j5eND8_f_px_XV1--3LzfXH25WRnJVV75yhlAEYylrVCa64GxElttIp13U4DIaa3qoBQQ58pE5IPnImhQMjkYmL5ubEtRG2epf8DOmgI3j9NxHTWkMqvpatDbDRtZ1UVNp2rGgzcuwGUGMveipEZX04sXbLOKM1GEqC6Qn06UnwG72Oe923fVsHUgFv7wEp_lowFz37bHCaoHZ-yZrLnqpB1V9WKT9JTYo5J3QPzzCqj67QW310hT66Qp9cUS-9eVzgw5V_HqiC9ydBHT7uPSadjcc6QOtTnUvtif8f_w9qkM2J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580696326</pqid></control><display><type>article</type><title>Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Mi, Haoyang ; Bivalacqua, Trinity J. ; Kates, Max ; Seiler, Roland ; Black, Peter C. ; Popel, Aleksander S. ; Baras, Alexander S.</creator><creatorcontrib>Mi, Haoyang ; Bivalacqua, Trinity J. ; Kates, Max ; Seiler, Roland ; Black, Peter C. ; Popel, Aleksander S. ; Baras, Alexander S.</creatorcontrib><description>Characterizing likelihood of response to neoadjuvant chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is an important yet unmet challenge. In this study, a machine-learning framework is developed using imaging of biopsy pathology specimens to generate models of likelihood of NAC response. Developed using cross-validation (evaluable N = 66) and an independent validation cohort (evaluable N = 56), our models achieve promising results (65%–73% accuracy). Interestingly, one model—using features derived from hematoxylin and eosin (H&E)-stained tissues in conjunction with clinico-demographic features—is able to stratify the cohort into likely responders in cross-validation and the validation cohort (response rate of 65% for predicted responder compared with the 41% baseline response rate in the validation cohort). The results suggest that computational approaches applied to routine pathology specimens of MIBC can capture differences between responders and non-responders to NAC and should therefore be considered in the future design of precision oncology for MIBC.
[Display omitted]
Using imaging of pathology samples to predict chemotherapy response in bladder cancerMulti-modal integration of cell nuclear and tissue architectural featuresModels using H&E images and basic clinical features able to enrich for respondersPredictive features suggest response-modulating factors in tumor microenvironment
Using multi-modal machine-learning leveraging features from digital pathology, Mi et al. develop models to predict response to chemotherapy in muscle-invasive bladder cancer. Models using handcrafted features derived from conventional H&E TMAs in conjunction with basic clinico-demographic features significantly stratify likelihood of response in both discovery and independent validation cohorts.</description><identifier>ISSN: 2666-3791</identifier><identifier>EISSN: 2666-3791</identifier><identifier>DOI: 10.1016/j.xcrm.2021.100382</identifier><identifier>PMID: 34622225</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Aged, 80 and over ; bladder cancer ; Cell Nucleus - pathology ; chemotherapy ; Cohort Studies ; digital pathology ; Female ; Humans ; image processing ; Image Processing, Computer-Assisted ; Machine Learning ; Male ; Middle Aged ; Models, Biological ; Muscles - pathology ; neoadjuvant ; Neoadjuvant Therapy ; Neoplasm Invasiveness ; nucleus morphology ; predictive biomarkers ; Survival Analysis ; tissue architecture ; Tumor Microenvironment ; Urinary Bladder Neoplasms - drug therapy ; Urinary Bladder Neoplasms - pathology</subject><ispartof>Cell reports. Medicine, 2021-09, Vol.2 (9), p.100382, Article 100382</ispartof><rights>2021 The Author(s)</rights><rights>2021 The Author(s).</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-8ffc001aac014673262fbee5e45f6f77e99c0c8d69ea592b0f352b2153fac5e13</citedby><cites>FETCH-LOGICAL-c521t-8ffc001aac014673262fbee5e45f6f77e99c0c8d69ea592b0f352b2153fac5e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484511/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666379121002366$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34622225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Haoyang</creatorcontrib><creatorcontrib>Bivalacqua, Trinity J.</creatorcontrib><creatorcontrib>Kates, Max</creatorcontrib><creatorcontrib>Seiler, Roland</creatorcontrib><creatorcontrib>Black, Peter C.</creatorcontrib><creatorcontrib>Popel, Aleksander S.</creatorcontrib><creatorcontrib>Baras, Alexander S.</creatorcontrib><title>Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture</title><title>Cell reports. Medicine</title><addtitle>Cell Rep Med</addtitle><description>Characterizing likelihood of response to neoadjuvant chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is an important yet unmet challenge. In this study, a machine-learning framework is developed using imaging of biopsy pathology specimens to generate models of likelihood of NAC response. Developed using cross-validation (evaluable N = 66) and an independent validation cohort (evaluable N = 56), our models achieve promising results (65%–73% accuracy). Interestingly, one model—using features derived from hematoxylin and eosin (H&E)-stained tissues in conjunction with clinico-demographic features—is able to stratify the cohort into likely responders in cross-validation and the validation cohort (response rate of 65% for predicted responder compared with the 41% baseline response rate in the validation cohort). The results suggest that computational approaches applied to routine pathology specimens of MIBC can capture differences between responders and non-responders to NAC and should therefore be considered in the future design of precision oncology for MIBC.
[Display omitted]
Using imaging of pathology samples to predict chemotherapy response in bladder cancerMulti-modal integration of cell nuclear and tissue architectural featuresModels using H&E images and basic clinical features able to enrich for respondersPredictive features suggest response-modulating factors in tumor microenvironment
Using multi-modal machine-learning leveraging features from digital pathology, Mi et al. develop models to predict response to chemotherapy in muscle-invasive bladder cancer. Models using handcrafted features derived from conventional H&E TMAs in conjunction with basic clinico-demographic features significantly stratify likelihood of response in both discovery and independent validation cohorts.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>bladder cancer</subject><subject>Cell Nucleus - pathology</subject><subject>chemotherapy</subject><subject>Cohort Studies</subject><subject>digital pathology</subject><subject>Female</subject><subject>Humans</subject><subject>image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Muscles - pathology</subject><subject>neoadjuvant</subject><subject>Neoadjuvant Therapy</subject><subject>Neoplasm Invasiveness</subject><subject>nucleus morphology</subject><subject>predictive biomarkers</subject><subject>Survival Analysis</subject><subject>tissue architecture</subject><subject>Tumor Microenvironment</subject><subject>Urinary Bladder Neoplasms - drug therapy</subject><subject>Urinary Bladder Neoplasms - pathology</subject><issn>2666-3791</issn><issn>2666-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAfOSyxR-xk0gICVV8VKoEBzhbE3u861ViL7az6v4HfjRetlTtBV_GGr9-PJ55m-Y1o1eMMvVue3Vn0nzFKWc1QUXPnzXnXCm1Et3Anj_anzWXOW8ppVwy1gv6sjkTreJ1yfPm9_eE1pvi90jmaHHKJDqSMO9iyEhKJAEj2O2yh1CI2eAcywYT7A7EBzIv2Uy48mEP-UgYJ7AWEzEQTA1L9mFNwlI1kCo-7TZxiusDgWBJ8TkvSCCZjS9oypLwVfPCwZTx8j5eND8_f_px_XV1--3LzfXH25WRnJVV75yhlAEYylrVCa64GxElttIp13U4DIaa3qoBQQ58pE5IPnImhQMjkYmL5ubEtRG2epf8DOmgI3j9NxHTWkMqvpatDbDRtZ1UVNp2rGgzcuwGUGMveipEZX04sXbLOKM1GEqC6Qn06UnwG72Oe923fVsHUgFv7wEp_lowFz37bHCaoHZ-yZrLnqpB1V9WKT9JTYo5J3QPzzCqj67QW310hT66Qp9cUS-9eVzgw5V_HqiC9ydBHT7uPSadjcc6QOtTnUvtif8f_w9qkM2J</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Mi, Haoyang</creator><creator>Bivalacqua, Trinity J.</creator><creator>Kates, Max</creator><creator>Seiler, Roland</creator><creator>Black, Peter C.</creator><creator>Popel, Aleksander S.</creator><creator>Baras, Alexander S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210921</creationdate><title>Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture</title><author>Mi, Haoyang ; Bivalacqua, Trinity J. ; Kates, Max ; Seiler, Roland ; Black, Peter C. ; Popel, Aleksander S. ; Baras, Alexander S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-8ffc001aac014673262fbee5e45f6f77e99c0c8d69ea592b0f352b2153fac5e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>bladder cancer</topic><topic>Cell Nucleus - pathology</topic><topic>chemotherapy</topic><topic>Cohort Studies</topic><topic>digital pathology</topic><topic>Female</topic><topic>Humans</topic><topic>image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Muscles - pathology</topic><topic>neoadjuvant</topic><topic>Neoadjuvant Therapy</topic><topic>Neoplasm Invasiveness</topic><topic>nucleus morphology</topic><topic>predictive biomarkers</topic><topic>Survival Analysis</topic><topic>tissue architecture</topic><topic>Tumor Microenvironment</topic><topic>Urinary Bladder Neoplasms - drug therapy</topic><topic>Urinary Bladder Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Haoyang</creatorcontrib><creatorcontrib>Bivalacqua, Trinity J.</creatorcontrib><creatorcontrib>Kates, Max</creatorcontrib><creatorcontrib>Seiler, Roland</creatorcontrib><creatorcontrib>Black, Peter C.</creatorcontrib><creatorcontrib>Popel, Aleksander S.</creatorcontrib><creatorcontrib>Baras, Alexander S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports. Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Haoyang</au><au>Bivalacqua, Trinity J.</au><au>Kates, Max</au><au>Seiler, Roland</au><au>Black, Peter C.</au><au>Popel, Aleksander S.</au><au>Baras, Alexander S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture</atitle><jtitle>Cell reports. Medicine</jtitle><addtitle>Cell Rep Med</addtitle><date>2021-09-21</date><risdate>2021</risdate><volume>2</volume><issue>9</issue><spage>100382</spage><pages>100382-</pages><artnum>100382</artnum><issn>2666-3791</issn><eissn>2666-3791</eissn><abstract>Characterizing likelihood of response to neoadjuvant chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is an important yet unmet challenge. In this study, a machine-learning framework is developed using imaging of biopsy pathology specimens to generate models of likelihood of NAC response. Developed using cross-validation (evaluable N = 66) and an independent validation cohort (evaluable N = 56), our models achieve promising results (65%–73% accuracy). Interestingly, one model—using features derived from hematoxylin and eosin (H&E)-stained tissues in conjunction with clinico-demographic features—is able to stratify the cohort into likely responders in cross-validation and the validation cohort (response rate of 65% for predicted responder compared with the 41% baseline response rate in the validation cohort). The results suggest that computational approaches applied to routine pathology specimens of MIBC can capture differences between responders and non-responders to NAC and should therefore be considered in the future design of precision oncology for MIBC.
[Display omitted]
Using imaging of pathology samples to predict chemotherapy response in bladder cancerMulti-modal integration of cell nuclear and tissue architectural featuresModels using H&E images and basic clinical features able to enrich for respondersPredictive features suggest response-modulating factors in tumor microenvironment
Using multi-modal machine-learning leveraging features from digital pathology, Mi et al. develop models to predict response to chemotherapy in muscle-invasive bladder cancer. Models using handcrafted features derived from conventional H&E TMAs in conjunction with basic clinico-demographic features significantly stratify likelihood of response in both discovery and independent validation cohorts.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34622225</pmid><doi>10.1016/j.xcrm.2021.100382</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-3791 |
ispartof | Cell reports. Medicine, 2021-09, Vol.2 (9), p.100382, Article 100382 |
issn | 2666-3791 2666-3791 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ca1bf475605d4b7e9cb2e79a6b838033 |
source | ScienceDirect®; PubMed Central |
subjects | Aged Aged, 80 and over bladder cancer Cell Nucleus - pathology chemotherapy Cohort Studies digital pathology Female Humans image processing Image Processing, Computer-Assisted Machine Learning Male Middle Aged Models, Biological Muscles - pathology neoadjuvant Neoadjuvant Therapy Neoplasm Invasiveness nucleus morphology predictive biomarkers Survival Analysis tissue architecture Tumor Microenvironment Urinary Bladder Neoplasms - drug therapy Urinary Bladder Neoplasms - pathology |
title | Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20models%20of%20response%20to%20neoadjuvant%20chemotherapy%20in%20muscle-invasive%20bladder%20cancer%20using%20nuclear%20morphology%20and%20tissue%20architecture&rft.jtitle=Cell%20reports.%20Medicine&rft.au=Mi,%20Haoyang&rft.date=2021-09-21&rft.volume=2&rft.issue=9&rft.spage=100382&rft.pages=100382-&rft.artnum=100382&rft.issn=2666-3791&rft.eissn=2666-3791&rft_id=info:doi/10.1016/j.xcrm.2021.100382&rft_dat=%3Cproquest_doaj_%3E2580696326%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-8ffc001aac014673262fbee5e45f6f77e99c0c8d69ea592b0f352b2153fac5e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580696326&rft_id=info:pmid/34622225&rfr_iscdi=true |