Loading…
Analysis of a novel hydrophobic acrylic enhanced monofocal intraocular lens compared to its standard monofocal type on the optical bench
Introduction The aim of this laboratory study is to objectively analyze the new hydrophobic, acrylic, enhanced monofocal intraocular lens Acunex Quantum (AN6Q) and compare it with the monofocal platform Acunex AN6. Methods Two IOL models were analyzed (Acunex Quantum AN6Q and Acunex AN6, Teleon Surg...
Saved in:
Published in: | BMC ophthalmology 2022-09, Vol.22 (1), p.1-356, Article 356 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction The aim of this laboratory study is to objectively analyze the new hydrophobic, acrylic, enhanced monofocal intraocular lens Acunex Quantum (AN6Q) and compare it with the monofocal platform Acunex AN6. Methods Two IOL models were analyzed (Acunex Quantum AN6Q and Acunex AN6, Teleon Surgical, Spankeren, Netherlands), each having the same refractive power of + 22.0 D, on the optical bench with the OptiSpheric IOL PRO 2. The measurements followed the guidelines of the International Standard Organization with following parameters: ISO 2 cornea (+ 0,28 [micro]), ISO 11979/2, lens placement in situ in NaCl with 35[degrees] temperature, 546 nm and selection of different aperture sizes (3.0 mm vs 4.5 mm). The aberrations of each IOL were evaluated by the WaveMaster IOL 2, a high-resolution Shack-Hartmann sensor in reverse projection setup. An in-situ model eye was used according to ISO 11979 in NaCl (n = 1.337) with 546 nm, mask width 4.51. Zernike polynomials up to 10th order were determined by means of the measured wavefront that describe the optical properties of the IOL. Results Through frequency modulation transfer function (mean) at 50 lp/mm (AN6Q/AN6 centered) was 0.687/0.731 (3.0 mm aperture) and 0.400/0.509 (4.5 mm aperture). The SR (mean) was 0.592/0.809 (3.0 mm) and 0.332/0.372 (4.5 mm). The MTF (mean) at 50 lp/mm (AN6Q/AN6 decentered by 1 mm) was 0.413/0.478 (3.0 mm) and 0.257/0.229 (4.5 mm). The SR (mean) was 0.393/0.404 (3.0 mm) and 0.183/0.212 (4.5 mm). The MTF (mean) at 50 lp/mm (AN6Q/AN6 tilted by 5[degrees]) was 0.508/0.710 (3.0 mm) and 0.337/0.513 (4.5 mm). The SR (mean) was 0.508/0.760 (3.0 mm) and 0.235/0.2372 (4.5 mm). AN6Q showed MTF peak of 0.55 with an enlarged depth of power of about 2.5 D and two cusps in the MTF curve. The spherical aberration Z 4-0 was about -0.21 [micro]m and the secondary spherical aberration Z 6-0 was about 0.16 [micro]m. No other relevant aberration showed up. Conclusion The new, enhanced monofocal AN6Q provides an extended range of focus with only slight decrease in contrast quality. Both types of the hydrophobic, acrylic Acunex IOL platform have its particular advantages in clinical settings and therefore its importance, respectively. Keywords: Enhanced monofocal intraocular lens, Optical bench study, Laboratory study, Quality of intraocular lens |
---|---|
ISSN: | 1471-2415 1471-2415 |
DOI: | 10.1186/s12886-022-02584-8 |