Loading…

A mathematical approach to improving the representation of surface water–groundwater exchange in the hyporheic zone

It is well known that land surface topography governs surface–groundwater interactions under some circumstances and can be separated in a Fourier-series spectrum that provides an exact analytical solution of both the surface and the underlying three-dimensional groundwater flows. We evaluate the per...

Full description

Saved in:
Bibliographic Details
Published in:Journal of water and climate change 2021-08, Vol.12 (5), p.1788-1801
Main Authors: He, Bowen, Guan, Qun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that land surface topography governs surface–groundwater interactions under some circumstances and can be separated in a Fourier-series spectrum that provides an exact analytical solution of both the surface and the underlying three-dimensional groundwater flows. We evaluate the performance of the current Fourier fitting process by testing on different scenarios of synthetic surfaces. We identify a technical gap and propose a new version of the approach which incorporates the spectral analysis method to help identify the statistically significant frequencies of the surface to guide the refinement and mesh. Our results show that spectral analysis is the method that can help improve the accuracy of representing the surface, thus further improving the accuracy of predicting the bedform-driven hyporheic exchange flows.
ISSN:2040-2244
2408-9354
DOI:10.2166/wcc.2020.162