Loading…

On the mechanism of carrier recombination in downsized blue micro-LEDs

The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm 2 on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achiev...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-11, Vol.11 (1), p.22788-22788, Article 22788
Main Authors: Chen, Po-Wei, Hsiao, Po-Wen, Chen, Hsuan-Jen, Lee, Bo-Sheng, Chang, Kai-Ping, Yen, Chao-Chun, Horng, Ray-Hua, Wuu, Dong-Sing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653
cites cdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653
container_end_page 22788
container_issue 1
container_start_page 22788
container_title Scientific reports
container_volume 11
creator Chen, Po-Wei
Hsiao, Po-Wen
Chen, Hsuan-Jen
Lee, Bo-Sheng
Chang, Kai-Ping
Yen, Chao-Chun
Horng, Ray-Hua
Wuu, Dong-Sing
description The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm 2 on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO 2 film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm 2 , the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm 2 μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm 2 exhibited a high value of 516 nits at the voltage of 3 V.
doi_str_mv 10.1038/s41598-021-02293-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ca59de586c984864bf45bd195eede79b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ca59de586c984864bf45bd195eede79b</doaj_id><sourcerecordid>2601151750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</originalsourceid><addsrcrecordid>eNp9kU1rHSEYhYfS0IQkf6CrgW66mdTXGR3dFEqaL7iQTfbixzv3epnRVGda2l9fcyekTRcVRNFzHvScqnoP5AJIKz7lDpgUDaFQJpVtQ95UJ5R0rKEtpW__2h9X5znvSRmMyg7ku-q47QQwBvSkur4P9bzDekK708HnqY5DbXVKHlOd0MbJ-KBnH0PtQ-3ij5D9L3S1GZdi8jbFZnP1NZ9VR4MeM54_r6fVw_XVw-Vts7m_ubv8smksg35uekArDFjTI3ecS2pFj0gRhXPQamZQWoGS8PJF7gCYY4Okum85YYaz9rS6W7Eu6r16TH7S6aeK2qvDQUxbpdPs7YjKaiYdMsGtFJ3gnRk6ZhxIhuiwl6awPq-sx8VM6CyGOenxFfT1TfA7tY3fleAAJcoC-PgMSPHbgnlWk88Wx1EHjEtWlBOQknIGRfrhH-k-LimUpA4qKOEwUlR0VZVUc044vDwGiHoqXa2lq1K6OpSunkztaspFHLaY_qD_4_oNSw6tFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601151750</pqid></control><display><type>article</type><title>On the mechanism of carrier recombination in downsized blue micro-LEDs</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Po-Wei ; Hsiao, Po-Wen ; Chen, Hsuan-Jen ; Lee, Bo-Sheng ; Chang, Kai-Ping ; Yen, Chao-Chun ; Horng, Ray-Hua ; Wuu, Dong-Sing</creator><creatorcontrib>Chen, Po-Wei ; Hsiao, Po-Wen ; Chen, Hsuan-Jen ; Lee, Bo-Sheng ; Chang, Kai-Ping ; Yen, Chao-Chun ; Horng, Ray-Hua ; Wuu, Dong-Sing</creatorcontrib><description>The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm 2 on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO 2 film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm 2 , the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm 2 μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm 2 exhibited a high value of 516 nits at the voltage of 3 V.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-02293-0</identifier><identifier>PMID: 34815512</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301 ; 639/624 ; 639/766 ; 639/925 ; Defects ; Emissions ; Genetic screening ; Humanities and Social Sciences ; Light emitting diodes ; multidisciplinary ; Photolithography ; Plasma etching ; Recombination ; Science ; Science (multidisciplinary) ; Silicon dioxide</subject><ispartof>Scientific reports, 2021-11, Vol.11 (1), p.22788-22788, Article 22788</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</citedby><cites>FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2601151750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2601151750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Chen, Po-Wei</creatorcontrib><creatorcontrib>Hsiao, Po-Wen</creatorcontrib><creatorcontrib>Chen, Hsuan-Jen</creatorcontrib><creatorcontrib>Lee, Bo-Sheng</creatorcontrib><creatorcontrib>Chang, Kai-Ping</creatorcontrib><creatorcontrib>Yen, Chao-Chun</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Wuu, Dong-Sing</creatorcontrib><title>On the mechanism of carrier recombination in downsized blue micro-LEDs</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm 2 on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO 2 film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm 2 , the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm 2 μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm 2 exhibited a high value of 516 nits at the voltage of 3 V.</description><subject>639/166</subject><subject>639/301</subject><subject>639/624</subject><subject>639/766</subject><subject>639/925</subject><subject>Defects</subject><subject>Emissions</subject><subject>Genetic screening</subject><subject>Humanities and Social Sciences</subject><subject>Light emitting diodes</subject><subject>multidisciplinary</subject><subject>Photolithography</subject><subject>Plasma etching</subject><subject>Recombination</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon dioxide</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rHSEYhYfS0IQkf6CrgW66mdTXGR3dFEqaL7iQTfbixzv3epnRVGda2l9fcyekTRcVRNFzHvScqnoP5AJIKz7lDpgUDaFQJpVtQ95UJ5R0rKEtpW__2h9X5znvSRmMyg7ku-q47QQwBvSkur4P9bzDekK708HnqY5DbXVKHlOd0MbJ-KBnH0PtQ-3ij5D9L3S1GZdi8jbFZnP1NZ9VR4MeM54_r6fVw_XVw-Vts7m_ubv8smksg35uekArDFjTI3ecS2pFj0gRhXPQamZQWoGS8PJF7gCYY4Okum85YYaz9rS6W7Eu6r16TH7S6aeK2qvDQUxbpdPs7YjKaiYdMsGtFJ3gnRk6ZhxIhuiwl6awPq-sx8VM6CyGOenxFfT1TfA7tY3fleAAJcoC-PgMSPHbgnlWk88Wx1EHjEtWlBOQknIGRfrhH-k-LimUpA4qKOEwUlR0VZVUc044vDwGiHoqXa2lq1K6OpSunkztaspFHLaY_qD_4_oNSw6tFQ</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Chen, Po-Wei</creator><creator>Hsiao, Po-Wen</creator><creator>Chen, Hsuan-Jen</creator><creator>Lee, Bo-Sheng</creator><creator>Chang, Kai-Ping</creator><creator>Yen, Chao-Chun</creator><creator>Horng, Ray-Hua</creator><creator>Wuu, Dong-Sing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211123</creationdate><title>On the mechanism of carrier recombination in downsized blue micro-LEDs</title><author>Chen, Po-Wei ; Hsiao, Po-Wen ; Chen, Hsuan-Jen ; Lee, Bo-Sheng ; Chang, Kai-Ping ; Yen, Chao-Chun ; Horng, Ray-Hua ; Wuu, Dong-Sing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166</topic><topic>639/301</topic><topic>639/624</topic><topic>639/766</topic><topic>639/925</topic><topic>Defects</topic><topic>Emissions</topic><topic>Genetic screening</topic><topic>Humanities and Social Sciences</topic><topic>Light emitting diodes</topic><topic>multidisciplinary</topic><topic>Photolithography</topic><topic>Plasma etching</topic><topic>Recombination</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Po-Wei</creatorcontrib><creatorcontrib>Hsiao, Po-Wen</creatorcontrib><creatorcontrib>Chen, Hsuan-Jen</creatorcontrib><creatorcontrib>Lee, Bo-Sheng</creatorcontrib><creatorcontrib>Chang, Kai-Ping</creatorcontrib><creatorcontrib>Yen, Chao-Chun</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Wuu, Dong-Sing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Po-Wei</au><au>Hsiao, Po-Wen</au><au>Chen, Hsuan-Jen</au><au>Lee, Bo-Sheng</au><au>Chang, Kai-Ping</au><au>Yen, Chao-Chun</au><au>Horng, Ray-Hua</au><au>Wuu, Dong-Sing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mechanism of carrier recombination in downsized blue micro-LEDs</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2021-11-23</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>22788</spage><epage>22788</epage><pages>22788-22788</pages><artnum>22788</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm 2 on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO 2 film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm 2 , the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm 2 μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm 2 exhibited a high value of 516 nits at the voltage of 3 V.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34815512</pmid><doi>10.1038/s41598-021-02293-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-11, Vol.11 (1), p.22788-22788, Article 22788
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ca59de586c984864bf45bd195eede79b
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166
639/301
639/624
639/766
639/925
Defects
Emissions
Genetic screening
Humanities and Social Sciences
Light emitting diodes
multidisciplinary
Photolithography
Plasma etching
Recombination
Science
Science (multidisciplinary)
Silicon dioxide
title On the mechanism of carrier recombination in downsized blue micro-LEDs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mechanism%20of%20carrier%20recombination%20in%20downsized%20blue%20micro-LEDs&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Po-Wei&rft.date=2021-11-23&rft.volume=11&rft.issue=1&rft.spage=22788&rft.epage=22788&rft.pages=22788-22788&rft.artnum=22788&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-02293-0&rft_dat=%3Cproquest_doaj_%3E2601151750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601151750&rft_id=info:pmid/34815512&rfr_iscdi=true