Loading…
On the mechanism of carrier recombination in downsized blue micro-LEDs
The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm 2 on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achiev...
Saved in:
Published in: | Scientific reports 2021-11, Vol.11 (1), p.22788-22788, Article 22788 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653 |
container_end_page | 22788 |
container_issue | 1 |
container_start_page | 22788 |
container_title | Scientific reports |
container_volume | 11 |
creator | Chen, Po-Wei Hsiao, Po-Wen Chen, Hsuan-Jen Lee, Bo-Sheng Chang, Kai-Ping Yen, Chao-Chun Horng, Ray-Hua Wuu, Dong-Sing |
description | The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm
2
on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO
2
film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm
2
, the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm
2
μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm
2
exhibited a high value of 516 nits at the voltage of 3 V. |
doi_str_mv | 10.1038/s41598-021-02293-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ca59de586c984864bf45bd195eede79b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ca59de586c984864bf45bd195eede79b</doaj_id><sourcerecordid>2601151750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</originalsourceid><addsrcrecordid>eNp9kU1rHSEYhYfS0IQkf6CrgW66mdTXGR3dFEqaL7iQTfbixzv3epnRVGda2l9fcyekTRcVRNFzHvScqnoP5AJIKz7lDpgUDaFQJpVtQ95UJ5R0rKEtpW__2h9X5znvSRmMyg7ku-q47QQwBvSkur4P9bzDekK708HnqY5DbXVKHlOd0MbJ-KBnH0PtQ-3ij5D9L3S1GZdi8jbFZnP1NZ9VR4MeM54_r6fVw_XVw-Vts7m_ubv8smksg35uekArDFjTI3ecS2pFj0gRhXPQamZQWoGS8PJF7gCYY4Okum85YYaz9rS6W7Eu6r16TH7S6aeK2qvDQUxbpdPs7YjKaiYdMsGtFJ3gnRk6ZhxIhuiwl6awPq-sx8VM6CyGOenxFfT1TfA7tY3fleAAJcoC-PgMSPHbgnlWk88Wx1EHjEtWlBOQknIGRfrhH-k-LimUpA4qKOEwUlR0VZVUc044vDwGiHoqXa2lq1K6OpSunkztaspFHLaY_qD_4_oNSw6tFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601151750</pqid></control><display><type>article</type><title>On the mechanism of carrier recombination in downsized blue micro-LEDs</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Po-Wei ; Hsiao, Po-Wen ; Chen, Hsuan-Jen ; Lee, Bo-Sheng ; Chang, Kai-Ping ; Yen, Chao-Chun ; Horng, Ray-Hua ; Wuu, Dong-Sing</creator><creatorcontrib>Chen, Po-Wei ; Hsiao, Po-Wen ; Chen, Hsuan-Jen ; Lee, Bo-Sheng ; Chang, Kai-Ping ; Yen, Chao-Chun ; Horng, Ray-Hua ; Wuu, Dong-Sing</creatorcontrib><description>The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm
2
on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO
2
film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm
2
, the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm
2
μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm
2
exhibited a high value of 516 nits at the voltage of 3 V.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-02293-0</identifier><identifier>PMID: 34815512</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301 ; 639/624 ; 639/766 ; 639/925 ; Defects ; Emissions ; Genetic screening ; Humanities and Social Sciences ; Light emitting diodes ; multidisciplinary ; Photolithography ; Plasma etching ; Recombination ; Science ; Science (multidisciplinary) ; Silicon dioxide</subject><ispartof>Scientific reports, 2021-11, Vol.11 (1), p.22788-22788, Article 22788</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</citedby><cites>FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2601151750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2601151750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Chen, Po-Wei</creatorcontrib><creatorcontrib>Hsiao, Po-Wen</creatorcontrib><creatorcontrib>Chen, Hsuan-Jen</creatorcontrib><creatorcontrib>Lee, Bo-Sheng</creatorcontrib><creatorcontrib>Chang, Kai-Ping</creatorcontrib><creatorcontrib>Yen, Chao-Chun</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Wuu, Dong-Sing</creatorcontrib><title>On the mechanism of carrier recombination in downsized blue micro-LEDs</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm
2
on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO
2
film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm
2
, the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm
2
μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm
2
exhibited a high value of 516 nits at the voltage of 3 V.</description><subject>639/166</subject><subject>639/301</subject><subject>639/624</subject><subject>639/766</subject><subject>639/925</subject><subject>Defects</subject><subject>Emissions</subject><subject>Genetic screening</subject><subject>Humanities and Social Sciences</subject><subject>Light emitting diodes</subject><subject>multidisciplinary</subject><subject>Photolithography</subject><subject>Plasma etching</subject><subject>Recombination</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon dioxide</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rHSEYhYfS0IQkf6CrgW66mdTXGR3dFEqaL7iQTfbixzv3epnRVGda2l9fcyekTRcVRNFzHvScqnoP5AJIKz7lDpgUDaFQJpVtQ95UJ5R0rKEtpW__2h9X5znvSRmMyg7ku-q47QQwBvSkur4P9bzDekK708HnqY5DbXVKHlOd0MbJ-KBnH0PtQ-3ij5D9L3S1GZdi8jbFZnP1NZ9VR4MeM54_r6fVw_XVw-Vts7m_ubv8smksg35uekArDFjTI3ecS2pFj0gRhXPQamZQWoGS8PJF7gCYY4Okum85YYaz9rS6W7Eu6r16TH7S6aeK2qvDQUxbpdPs7YjKaiYdMsGtFJ3gnRk6ZhxIhuiwl6awPq-sx8VM6CyGOenxFfT1TfA7tY3fleAAJcoC-PgMSPHbgnlWk88Wx1EHjEtWlBOQknIGRfrhH-k-LimUpA4qKOEwUlR0VZVUc044vDwGiHoqXa2lq1K6OpSunkztaspFHLaY_qD_4_oNSw6tFQ</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Chen, Po-Wei</creator><creator>Hsiao, Po-Wen</creator><creator>Chen, Hsuan-Jen</creator><creator>Lee, Bo-Sheng</creator><creator>Chang, Kai-Ping</creator><creator>Yen, Chao-Chun</creator><creator>Horng, Ray-Hua</creator><creator>Wuu, Dong-Sing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211123</creationdate><title>On the mechanism of carrier recombination in downsized blue micro-LEDs</title><author>Chen, Po-Wei ; Hsiao, Po-Wen ; Chen, Hsuan-Jen ; Lee, Bo-Sheng ; Chang, Kai-Ping ; Yen, Chao-Chun ; Horng, Ray-Hua ; Wuu, Dong-Sing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166</topic><topic>639/301</topic><topic>639/624</topic><topic>639/766</topic><topic>639/925</topic><topic>Defects</topic><topic>Emissions</topic><topic>Genetic screening</topic><topic>Humanities and Social Sciences</topic><topic>Light emitting diodes</topic><topic>multidisciplinary</topic><topic>Photolithography</topic><topic>Plasma etching</topic><topic>Recombination</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Po-Wei</creatorcontrib><creatorcontrib>Hsiao, Po-Wen</creatorcontrib><creatorcontrib>Chen, Hsuan-Jen</creatorcontrib><creatorcontrib>Lee, Bo-Sheng</creatorcontrib><creatorcontrib>Chang, Kai-Ping</creatorcontrib><creatorcontrib>Yen, Chao-Chun</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Wuu, Dong-Sing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Po-Wei</au><au>Hsiao, Po-Wen</au><au>Chen, Hsuan-Jen</au><au>Lee, Bo-Sheng</au><au>Chang, Kai-Ping</au><au>Yen, Chao-Chun</au><au>Horng, Ray-Hua</au><au>Wuu, Dong-Sing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mechanism of carrier recombination in downsized blue micro-LEDs</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2021-11-23</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>22788</spage><epage>22788</epage><pages>22788-22788</pages><artnum>22788</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm
2
on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO
2
film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm
2
, the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm
2
μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm
2
exhibited a high value of 516 nits at the voltage of 3 V.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34815512</pmid><doi>10.1038/s41598-021-02293-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-11, Vol.11 (1), p.22788-22788, Article 22788 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ca59de586c984864bf45bd195eede79b |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166 639/301 639/624 639/766 639/925 Defects Emissions Genetic screening Humanities and Social Sciences Light emitting diodes multidisciplinary Photolithography Plasma etching Recombination Science Science (multidisciplinary) Silicon dioxide |
title | On the mechanism of carrier recombination in downsized blue micro-LEDs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mechanism%20of%20carrier%20recombination%20in%20downsized%20blue%20micro-LEDs&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Po-Wei&rft.date=2021-11-23&rft.volume=11&rft.issue=1&rft.spage=22788&rft.epage=22788&rft.pages=22788-22788&rft.artnum=22788&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-02293-0&rft_dat=%3Cproquest_doaj_%3E2601151750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-71ec8b1cb7e6d6692c87ee2ee8dd13a5be9c8e9061036d115d5f92a73605b653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601151750&rft_id=info:pmid/34815512&rfr_iscdi=true |