Loading…
Generating Labeled Training Datasets Towards Unified Network Intrusion Detection Systems
It is crucial to implement innovative artificial intelligence (AI)-powered network intrusion detection systems (NIDSes) to protect enterprise networks from cyberattacks, which have recently become more diverse and sophisticated. High-quality labeled training datasets are required to train AI-powered...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.53972-53986 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-9669bc7a69542b948ebd3acf354df5425c2fae9037069c12a662212016ac6de13 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-9669bc7a69542b948ebd3acf354df5425c2fae9037069c12a662212016ac6de13 |
container_end_page | 53986 |
container_issue | |
container_start_page | 53972 |
container_title | IEEE access |
container_volume | 10 |
creator | Ishibashi, Ryosuke Miyamoto, Kohei Han, Chansu Ban, Tao Takahashi, Takeshi Takeuchi, Jun'ichi |
description | It is crucial to implement innovative artificial intelligence (AI)-powered network intrusion detection systems (NIDSes) to protect enterprise networks from cyberattacks, which have recently become more diverse and sophisticated. High-quality labeled training datasets are required to train AI-powered NIDSes; such datasets are globally scarce, and generating new training datasets is considered cumbersome. In this study, we investigate the possibility of an approach that integrates the strengths of existing security appliances to generate labeled training datasets that can be leveraged to develop brand-new AI-powered cybersecurity solutions. We begin by locating communication flows that the deployed NIDSes detect as suspicious, investigating their causal factors, and assigning appropriate labels in a universal format. Then, we output the packet data in the identified communication flows and the corresponding alert-type labels as labeled data. We demonstrate the effectiveness of the labeling scheme by evaluating classification models trained with the labeled dataset we generated. Furthermore, we provide case studies to examine the performance of several commonly used NIDSes and on practical approaches to automating the security triage process. Labeled datasets in this study are generated using public datasets and open-source NIDSes to ensure the reproducibility of the results. The datasets and the software tools are made publicly accessible for research use. |
doi_str_mv | 10.1109/ACCESS.2022.3176098 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ca5b571c8e454d2bb3bb7aa5b73b4eb6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9777676</ieee_id><doaj_id>oai_doaj_org_article_ca5b571c8e454d2bb3bb7aa5b73b4eb6</doaj_id><sourcerecordid>2669159094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9669bc7a69542b948ebd3acf354df5425c2fae9037069c12a662212016ac6de13</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXERB0f4CLwueW_Oxm2yOpX4Vih7agrfwkn0rqe1GkxTx35u6RXyX9xhm5g1MUVxTMqGUqNvpbHa_XE4YYWzCqRRENSfFBaNCjXnNxem_-7wYxbgheZoM1fKieH3EHgMk17-VCzC4xbZcBXD9AbiDBBFTLFf-C0Iby3XvOpcZz5i-fHgv530K--h8X95hQpsO1_I7JtzFq-Ksg23E0XFfFuuH-9Xsabx4eZzPpouxrUiTxkoIZayEnKZiRlUNmpaD7XhdtV2Gass6QEW4JEJZykAIxigjVIAVLVJ-WcwH39bDRn8Et4PwrT04_Qv48KYhJGe3qC3UppbUNlhld2YMN0ZCBiU3FRqRvW4Gr4_gP_cYk974fehzfM1yTloroqrM4gPLBh9jwO7vKyX60IgeGtGHRvSxkay6HlQOEf8USkoppOA_3YKHqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669159094</pqid></control><display><type>article</type><title>Generating Labeled Training Datasets Towards Unified Network Intrusion Detection Systems</title><source>IEEE Open Access Journals</source><creator>Ishibashi, Ryosuke ; Miyamoto, Kohei ; Han, Chansu ; Ban, Tao ; Takahashi, Takeshi ; Takeuchi, Jun'ichi</creator><creatorcontrib>Ishibashi, Ryosuke ; Miyamoto, Kohei ; Han, Chansu ; Ban, Tao ; Takahashi, Takeshi ; Takeuchi, Jun'ichi</creatorcontrib><description>It is crucial to implement innovative artificial intelligence (AI)-powered network intrusion detection systems (NIDSes) to protect enterprise networks from cyberattacks, which have recently become more diverse and sophisticated. High-quality labeled training datasets are required to train AI-powered NIDSes; such datasets are globally scarce, and generating new training datasets is considered cumbersome. In this study, we investigate the possibility of an approach that integrates the strengths of existing security appliances to generate labeled training datasets that can be leveraged to develop brand-new AI-powered cybersecurity solutions. We begin by locating communication flows that the deployed NIDSes detect as suspicious, investigating their causal factors, and assigning appropriate labels in a universal format. Then, we output the packet data in the identified communication flows and the corresponding alert-type labels as labeled data. We demonstrate the effectiveness of the labeling scheme by evaluating classification models trained with the labeled dataset we generated. Furthermore, we provide case studies to examine the performance of several commonly used NIDSes and on practical approaches to automating the security triage process. Labeled datasets in this study are generated using public datasets and open-source NIDSes to ensure the reproducibility of the results. The datasets and the software tools are made publicly accessible for research use.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3176098</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Cybersecurity ; Data models ; Datasets ; Feature extraction ; Intrusion detection systems ; IP networks ; Labels ; Network intrusion detection ; Network intrusion detection system ; packet data analysis ; packet replay ; public dataset ; Reproducibility ; Reproducibility of results ; Security ; security alert ; security data labeling ; Software ; Software development tools ; Training</subject><ispartof>IEEE access, 2022, Vol.10, p.53972-53986</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9669bc7a69542b948ebd3acf354df5425c2fae9037069c12a662212016ac6de13</citedby><cites>FETCH-LOGICAL-c408t-9669bc7a69542b948ebd3acf354df5425c2fae9037069c12a662212016ac6de13</cites><orcidid>0000-0002-6477-7770 ; 0000-0002-0977-4155 ; 0000-0002-1728-5300 ; 0000-0002-9616-3212 ; 0000-0002-5819-3082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9777676$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ishibashi, Ryosuke</creatorcontrib><creatorcontrib>Miyamoto, Kohei</creatorcontrib><creatorcontrib>Han, Chansu</creatorcontrib><creatorcontrib>Ban, Tao</creatorcontrib><creatorcontrib>Takahashi, Takeshi</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><title>Generating Labeled Training Datasets Towards Unified Network Intrusion Detection Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>It is crucial to implement innovative artificial intelligence (AI)-powered network intrusion detection systems (NIDSes) to protect enterprise networks from cyberattacks, which have recently become more diverse and sophisticated. High-quality labeled training datasets are required to train AI-powered NIDSes; such datasets are globally scarce, and generating new training datasets is considered cumbersome. In this study, we investigate the possibility of an approach that integrates the strengths of existing security appliances to generate labeled training datasets that can be leveraged to develop brand-new AI-powered cybersecurity solutions. We begin by locating communication flows that the deployed NIDSes detect as suspicious, investigating their causal factors, and assigning appropriate labels in a universal format. Then, we output the packet data in the identified communication flows and the corresponding alert-type labels as labeled data. We demonstrate the effectiveness of the labeling scheme by evaluating classification models trained with the labeled dataset we generated. Furthermore, we provide case studies to examine the performance of several commonly used NIDSes and on practical approaches to automating the security triage process. Labeled datasets in this study are generated using public datasets and open-source NIDSes to ensure the reproducibility of the results. The datasets and the software tools are made publicly accessible for research use.</description><subject>Artificial intelligence</subject><subject>Cybersecurity</subject><subject>Data models</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Intrusion detection systems</subject><subject>IP networks</subject><subject>Labels</subject><subject>Network intrusion detection</subject><subject>Network intrusion detection system</subject><subject>packet data analysis</subject><subject>packet replay</subject><subject>public dataset</subject><subject>Reproducibility</subject><subject>Reproducibility of results</subject><subject>Security</subject><subject>security alert</subject><subject>security data labeling</subject><subject>Software</subject><subject>Software development tools</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXERB0f4CLwueW_Oxm2yOpX4Vih7agrfwkn0rqe1GkxTx35u6RXyX9xhm5g1MUVxTMqGUqNvpbHa_XE4YYWzCqRRENSfFBaNCjXnNxem_-7wYxbgheZoM1fKieH3EHgMk17-VCzC4xbZcBXD9AbiDBBFTLFf-C0Iby3XvOpcZz5i-fHgv530K--h8X95hQpsO1_I7JtzFq-Ksg23E0XFfFuuH-9Xsabx4eZzPpouxrUiTxkoIZayEnKZiRlUNmpaD7XhdtV2Gass6QEW4JEJZykAIxigjVIAVLVJ-WcwH39bDRn8Et4PwrT04_Qv48KYhJGe3qC3UppbUNlhld2YMN0ZCBiU3FRqRvW4Gr4_gP_cYk974fehzfM1yTloroqrM4gPLBh9jwO7vKyX60IgeGtGHRvSxkay6HlQOEf8USkoppOA_3YKHqA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ishibashi, Ryosuke</creator><creator>Miyamoto, Kohei</creator><creator>Han, Chansu</creator><creator>Ban, Tao</creator><creator>Takahashi, Takeshi</creator><creator>Takeuchi, Jun'ichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6477-7770</orcidid><orcidid>https://orcid.org/0000-0002-0977-4155</orcidid><orcidid>https://orcid.org/0000-0002-1728-5300</orcidid><orcidid>https://orcid.org/0000-0002-9616-3212</orcidid><orcidid>https://orcid.org/0000-0002-5819-3082</orcidid></search><sort><creationdate>2022</creationdate><title>Generating Labeled Training Datasets Towards Unified Network Intrusion Detection Systems</title><author>Ishibashi, Ryosuke ; Miyamoto, Kohei ; Han, Chansu ; Ban, Tao ; Takahashi, Takeshi ; Takeuchi, Jun'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9669bc7a69542b948ebd3acf354df5425c2fae9037069c12a662212016ac6de13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Cybersecurity</topic><topic>Data models</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Intrusion detection systems</topic><topic>IP networks</topic><topic>Labels</topic><topic>Network intrusion detection</topic><topic>Network intrusion detection system</topic><topic>packet data analysis</topic><topic>packet replay</topic><topic>public dataset</topic><topic>Reproducibility</topic><topic>Reproducibility of results</topic><topic>Security</topic><topic>security alert</topic><topic>security data labeling</topic><topic>Software</topic><topic>Software development tools</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishibashi, Ryosuke</creatorcontrib><creatorcontrib>Miyamoto, Kohei</creatorcontrib><creatorcontrib>Han, Chansu</creatorcontrib><creatorcontrib>Ban, Tao</creatorcontrib><creatorcontrib>Takahashi, Takeshi</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishibashi, Ryosuke</au><au>Miyamoto, Kohei</au><au>Han, Chansu</au><au>Ban, Tao</au><au>Takahashi, Takeshi</au><au>Takeuchi, Jun'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating Labeled Training Datasets Towards Unified Network Intrusion Detection Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>53972</spage><epage>53986</epage><pages>53972-53986</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>It is crucial to implement innovative artificial intelligence (AI)-powered network intrusion detection systems (NIDSes) to protect enterprise networks from cyberattacks, which have recently become more diverse and sophisticated. High-quality labeled training datasets are required to train AI-powered NIDSes; such datasets are globally scarce, and generating new training datasets is considered cumbersome. In this study, we investigate the possibility of an approach that integrates the strengths of existing security appliances to generate labeled training datasets that can be leveraged to develop brand-new AI-powered cybersecurity solutions. We begin by locating communication flows that the deployed NIDSes detect as suspicious, investigating their causal factors, and assigning appropriate labels in a universal format. Then, we output the packet data in the identified communication flows and the corresponding alert-type labels as labeled data. We demonstrate the effectiveness of the labeling scheme by evaluating classification models trained with the labeled dataset we generated. Furthermore, we provide case studies to examine the performance of several commonly used NIDSes and on practical approaches to automating the security triage process. Labeled datasets in this study are generated using public datasets and open-source NIDSes to ensure the reproducibility of the results. The datasets and the software tools are made publicly accessible for research use.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3176098</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6477-7770</orcidid><orcidid>https://orcid.org/0000-0002-0977-4155</orcidid><orcidid>https://orcid.org/0000-0002-1728-5300</orcidid><orcidid>https://orcid.org/0000-0002-9616-3212</orcidid><orcidid>https://orcid.org/0000-0002-5819-3082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.53972-53986 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ca5b571c8e454d2bb3bb7aa5b73b4eb6 |
source | IEEE Open Access Journals |
subjects | Artificial intelligence Cybersecurity Data models Datasets Feature extraction Intrusion detection systems IP networks Labels Network intrusion detection Network intrusion detection system packet data analysis packet replay public dataset Reproducibility Reproducibility of results Security security alert security data labeling Software Software development tools Training |
title | Generating Labeled Training Datasets Towards Unified Network Intrusion Detection Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20Labeled%20Training%20Datasets%20Towards%20Unified%20Network%20Intrusion%20Detection%20Systems&rft.jtitle=IEEE%20access&rft.au=Ishibashi,%20Ryosuke&rft.date=2022&rft.volume=10&rft.spage=53972&rft.epage=53986&rft.pages=53972-53986&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3176098&rft_dat=%3Cproquest_doaj_%3E2669159094%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-9669bc7a69542b948ebd3acf354df5425c2fae9037069c12a662212016ac6de13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2669159094&rft_id=info:pmid/&rft_ieee_id=9777676&rfr_iscdi=true |