Loading…
Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization
Hyperspectral image (HSI) possesses three intrinsic characteristics: the global correlation across spectral domain, the nonlocal self-similarity across spatial domain, and the local smooth structure across both spatial and spectral domains. This paper proposes a novel tensor based approach to handle...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2017-12, Vol.9 (12), p.1286 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hyperspectral image (HSI) possesses three intrinsic characteristics: the global correlation across spectral domain, the nonlocal self-similarity across spatial domain, and the local smooth structure across both spatial and spectral domains. This paper proposes a novel tensor based approach to handle the problem of HSI spatial super-resolution by modeling such three underlying characteristics. Specifically, a noncovex tensor penalty is used to exploit the former two intrinsic characteristics hidden in several 4D tensors formed by nonlocal similar patches within the 3D HSI. In addition, the local smoothness in both spatial and spectral modes of the HSI cube is characterized by a 3D total variation (TV) term. Then, we develop an effective algorithm for solving the resulting optimization by using the local linear approximation (LLA) strategy and the alternative direction method of multipliers (ADMM). A series of experiments are carried out to illustrate the superiority of the proposed approach over some state-of-the-art approaches. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs9121286 |