Loading…

Tolerance of Three Quinoa Cultivars (Chenopodium quinoa Willd.) to Salinity and Alkalinity Stress During Germination Stage

Salinity and alkalinity are two of the main causes for productivity losses in agriculture. Quinoa represents a better alternative for global food products such as rice and wheat flour due to its high nutritional value and abiotic stress tolerance. Three cultivars of quinoa seeds (Titicaca, Puno and...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2019-06, Vol.9 (6), p.287
Main Authors: Stoleru, Vasile, Slabu, Cristina, Vitanescu, Maricel, Peres, Catalina, Cojocaru, Alexandru, Covasa, Mihaela, Mihalache, Gabriela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salinity and alkalinity are two of the main causes for productivity losses in agriculture. Quinoa represents a better alternative for global food products such as rice and wheat flour due to its high nutritional value and abiotic stress tolerance. Three cultivars of quinoa seeds (Titicaca, Puno and Vikinga) originating from Denmark were used in the experiments. The seeds were germinated under the action of three different salts (NaCl, Na2SO4, Na2CO3) at 0–300 mM for five days and the germination rate was calculated. Biometric measurements (radicle and hypocotyls lengths) andbiochemical determinations (proline) were performed in order to quantify the tolerance and the effects of salt and alkali stresses on the three quinoa cultivars. The germination rates showed that all cultivars were affected by the presence of salts, especially at 300 mM. The most sensitive cultivar to salts was Titicaca cultivar which evinced the lowest germination rate, regardless of the salt and the concentration used. On the other hand, Puno and Vikinga cultivars showed the best tolerance to the saline and alkaline stresses. Among the salts used, Na2CO3 had the most detrimental effects on the germination of quinoa seeds inhibiting the germination by ~50% starting with 50 mM. More affected was the growth of hypocotyls in the presence of this salt, being completely inhibited for the seeds of the Puno and Titicaca cultivars. Vikinga cultivar was the only one able to grow hypocotyls at 50 and 100 mM Na2CO3. Also, this cultivar had a high adaptability to NaCl stress when significant differences were observed for the germination rates at 200 and 300 mM as compared to 0 mM NaCl, due to the proline production whose content was significantly greater than that of the untreated seeds. In conclusion, the tolerance of the three quinoa cultivars to saline and alkali stress varied with the salt type, salt concentration and tested cultivar, with the Vikinga and Puno cultivars showing the best potential for growing under saline conditions.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy9060287