Loading…
Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2:Co) nanoparticles by using hydrothermal method
Different concentrations (2, 4, 6, and 8 mole %) of cobalt doped cerium oxide nanoparticles (CeO2:Co NPs) were synthesized by hydrothermal method. The synthesized samples were characterized by using various techniques to understand their structural, optical and surface morphological properties. The...
Saved in:
Published in: | Journal of materials research and technology 2019-01, Vol.8 (1), p.267-274 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Different concentrations (2, 4, 6, and 8 mole %) of cobalt doped cerium oxide nanoparticles (CeO2:Co NPs) were synthesized by hydrothermal method. The synthesized samples were characterized by using various techniques to understand their structural, optical and surface morphological properties. The face-centred cubic (FCC) structure of the CeO2:Co NPs was identified from the X-ray diffraction (XRD) analysis. The calculated crystallites size of the CeO2:Co NPs were decreased from 20nm to 17nm on increased the concentration of cobalt from 2 mole % to 8 mole %. The bonding formation between cerium and oxygen (CeO) was confirmed using Fourier transform infra-red spectroscopy (FTIR). The surface morphology and shape of the CeO2:Co NPs were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM images have revealed a cube shaped, uniformly distributed and well dispersed CeO2:Co NPs. Further, a slight distortion of surface morphology was obtained when increased the concentration of cobalt. The optical properties were investigated by using ultra-violet visible (UV–vis) spectroscopy. A optical absorption band nature was observed from CeO2:Co NPs when compared with bulk spectrum. The bandgap energy of the CeO2:Co NPs were increased from 3.64eV to 3.69eV on increased the cobalt concentration. The photoluminescence (PL) emission spectrum of CeO2:Co NPs showed an enhanced defect of reduced emission by using spectrofluorometer. The CeO2:Co NPs resulted good antibacterial activity against pathogenic bacteria such Escherichia coli, Staphylococcus aureus, Bacillus Cereus and Salmonella Typhi. Hence, the CeO2:Co NPs could be used as biomaterial in nano-biotechnology applications. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2017.12.005 |