Loading…

Electronic Band Structure of Transition Metal Dichalcogenides from Ab Initio and Slater–Koster Tight-Binding Model

Semiconducting transition metal dichalcogenides present a complex electronic band structure with a rich orbital contribution to their valence and conduction bands. The possibility to consider the electronic states from a tight-binding model is highly useful for the calculation of many physical prope...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2016-10, Vol.6 (10), p.284-284
Main Authors: Silva-Guillen, Jose angel, San-Jose, Pablo, Roldan, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconducting transition metal dichalcogenides present a complex electronic band structure with a rich orbital contribution to their valence and conduction bands. The possibility to consider the electronic states from a tight-binding model is highly useful for the calculation of many physical properties, for which first principle calculations are more demanding in computational terms when having a large number of atoms. Here, we present a set of Slater-Koster parameters for a tight-binding model that accurately reproduce the structure and the orbital character of the valence and conduction bands of single layer MX 2 , where M = Mo, W and X = S, Se. The fit of the analytical tight-binding Hamiltonian is done based on band structure from ab initio calculations. The model is used to calculate the optical conductivity of the different compounds from the Kubo formula.
ISSN:2076-3417
2076-3417
DOI:10.3390/app6100284