Loading…

Multidimensional Vibrations of Cable-Harnessed Beam Structures with Periodic Pattern: Modeling and Experiment

The dynamics of space structures is significantly impacted by the presence of power and electronic cables. Robust physical model is essential to investigate how the host structure dynamics is influenced by cable harnessing. All the developed models only considered the decoupled bending motion. Initi...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2022-01, Vol.2022, p.1-23
Main Authors: Yerrapragada, Karthik, Agrawal, Pranav, Salehian, Armaghan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dynamics of space structures is significantly impacted by the presence of power and electronic cables. Robust physical model is essential to investigate how the host structure dynamics is influenced by cable harnessing. All the developed models only considered the decoupled bending motion. Initial studies by authors point out the importance of coordinate coupling in structures with straight longitudinal cable patterns. In this article, an experimentally validated mathematical model is developed to analyze the fully coupled dynamics of beam with a more complex cable wrapping pattern which is periodic in nature. The effects of cable wrapping pattern and geometry on the system dynamics are investigated through the proposed coupled model. Homogenization-based mathematical modeling is developed to obtain an analogous solid beam that represents the cable wrapped system. The energy expressions obtained for fundamental repeating segment are transferred into the global coordinates consisting of several periodic elements. The coupled partial differential equations (PDE) are obtained for an analogous solid structure. The advantage of the proposed analytical model over the existing models to analyze the vibratory motion of beam with complex cable wrapping pattern has been shown through experimental validation.
ISSN:1070-9622
1875-9203
DOI:10.1155/2022/7343582