Loading…
Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform
We use a new integral transform approach to solve the fractional Harry Dym equation and fractional Rosenau-Hyman equation in this work. The Elzaki transform and the integral transformation are combined in the suggested method (ET). To handle two nonlinear problems, we first construct the Elzaki tran...
Saved in:
Published in: | Journal of function spaces 2022, Vol.2022, p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-cf7960bf458f1bc0534751faf4cb3c53d5b7cae72c047167d9c5221d3bdf29103 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-cf7960bf458f1bc0534751faf4cb3c53d5b7cae72c047167d9c5221d3bdf29103 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Journal of function spaces |
container_volume | 2022 |
creator | Alshammari, Saleh Iqbal, Naveed Yar, Mohammad |
description | We use a new integral transform approach to solve the fractional Harry Dym equation and fractional Rosenau-Hyman equation in this work. The Elzaki transform and the integral transformation are combined in the suggested method (ET). To handle two nonlinear problems, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu fractional derivative (ABFD). The ultimate purpose of this study is to find an error analysis that demonstrates that our final result converges to the exact and approximate result. The convergent series form solution demonstrates the method’s efficiency in resolving several types of fractional differential equations. Furthermore, the solutions obtained in this study agree well with the exact solutions; thus, this strategy is powerful and efficient as an alternate way for obtaining approximate solutions to both linear and nonlinear fractional differential equations. |
doi_str_mv | 10.1155/2022/8736030 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cae6424dd05c4140b4af856096334c63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cae6424dd05c4140b4af856096334c63</doaj_id><sourcerecordid>2715335977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-cf7960bf458f1bc0534751faf4cb3c53d5b7cae72c047167d9c5221d3bdf29103</originalsourceid><addsrcrecordid>eNp9kU9LJDEQxYPsgjJ68wMEPO72mv-ZPoqrzoAoiHsO1UlHM_YkmsyM9Lc3sy0ezSEpil-9Iu8hdErJH0qlPGeEsfO55opwcoCOGKeimdfz46tu1SE6KWVFCKG0pULKI_RyEWEYN8HCgJdx15dNeIJNSBEnj-9SHELsIePrDHbfrdQCch7x33GNITr8kEofYdssxjVEfPW2nYZ3ATDU-V0_4McMsfiU18fop4eh9Cef7wz9u756vFw0t_c3y8uL28ZypTaN9bpVpPNCzj3tLJFcaEk9eGE7biV3stMWes0sEZoq7VorGaOOd86zlhI-Q8tJ1yVYmdcc1pBHkyCY_42Unwzk-uWhN1VHCSacI9IKKkgnwM-lIq3iXNh6zdDZpPWa09u22mNWaZurD8UwTSXnstW6Ur8nyuZUSu7911ZKzD4ds0_HfKZT8V8T_hyig_fwPf0BkTSN1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715335977</pqid></control><display><type>article</type><title>Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform</title><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Alshammari, Saleh ; Iqbal, Naveed ; Yar, Mohammad</creator><contributor>Gurefe, Yusuf</contributor><creatorcontrib>Alshammari, Saleh ; Iqbal, Naveed ; Yar, Mohammad ; Gurefe, Yusuf</creatorcontrib><description>We use a new integral transform approach to solve the fractional Harry Dym equation and fractional Rosenau-Hyman equation in this work. The Elzaki transform and the integral transformation are combined in the suggested method (ET). To handle two nonlinear problems, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu fractional derivative (ABFD). The ultimate purpose of this study is to find an error analysis that demonstrates that our final result converges to the exact and approximate result. The convergent series form solution demonstrates the method’s efficiency in resolving several types of fractional differential equations. Furthermore, the solutions obtained in this study agree well with the exact solutions; thus, this strategy is powerful and efficient as an alternate way for obtaining approximate solutions to both linear and nonlinear fractional differential equations.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/2022/8736030</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Calculus ; Control theory ; Convergence ; Decomposition ; Differential equations ; Error analysis ; Exact solutions ; Fractional calculus ; Integral transforms ; Mathematical analysis ; Partial differential equations</subject><ispartof>Journal of function spaces, 2022, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Saleh Alshammari et al.</rights><rights>Copyright © 2022 Saleh Alshammari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-cf7960bf458f1bc0534751faf4cb3c53d5b7cae72c047167d9c5221d3bdf29103</citedby><cites>FETCH-LOGICAL-c366t-cf7960bf458f1bc0534751faf4cb3c53d5b7cae72c047167d9c5221d3bdf29103</cites><orcidid>0000-0001-9604-1680 ; 0000-0003-3846-0128 ; 0000-0002-8548-7078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2715335977/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2715335977?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,75096</link.rule.ids></links><search><contributor>Gurefe, Yusuf</contributor><creatorcontrib>Alshammari, Saleh</creatorcontrib><creatorcontrib>Iqbal, Naveed</creatorcontrib><creatorcontrib>Yar, Mohammad</creatorcontrib><title>Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform</title><title>Journal of function spaces</title><description>We use a new integral transform approach to solve the fractional Harry Dym equation and fractional Rosenau-Hyman equation in this work. The Elzaki transform and the integral transformation are combined in the suggested method (ET). To handle two nonlinear problems, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu fractional derivative (ABFD). The ultimate purpose of this study is to find an error analysis that demonstrates that our final result converges to the exact and approximate result. The convergent series form solution demonstrates the method’s efficiency in resolving several types of fractional differential equations. Furthermore, the solutions obtained in this study agree well with the exact solutions; thus, this strategy is powerful and efficient as an alternate way for obtaining approximate solutions to both linear and nonlinear fractional differential equations.</description><subject>Calculus</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Differential equations</subject><subject>Error analysis</subject><subject>Exact solutions</subject><subject>Fractional calculus</subject><subject>Integral transforms</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9LJDEQxYPsgjJ68wMEPO72mv-ZPoqrzoAoiHsO1UlHM_YkmsyM9Lc3sy0ezSEpil-9Iu8hdErJH0qlPGeEsfO55opwcoCOGKeimdfz46tu1SE6KWVFCKG0pULKI_RyEWEYN8HCgJdx15dNeIJNSBEnj-9SHELsIePrDHbfrdQCch7x33GNITr8kEofYdssxjVEfPW2nYZ3ATDU-V0_4McMsfiU18fop4eh9Cef7wz9u756vFw0t_c3y8uL28ZypTaN9bpVpPNCzj3tLJFcaEk9eGE7biV3stMWes0sEZoq7VorGaOOd86zlhI-Q8tJ1yVYmdcc1pBHkyCY_42Unwzk-uWhN1VHCSacI9IKKkgnwM-lIq3iXNh6zdDZpPWa09u22mNWaZurD8UwTSXnstW6Ur8nyuZUSu7911ZKzD4ds0_HfKZT8V8T_hyig_fwPf0BkTSN1g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Alshammari, Saleh</creator><creator>Iqbal, Naveed</creator><creator>Yar, Mohammad</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9604-1680</orcidid><orcidid>https://orcid.org/0000-0003-3846-0128</orcidid><orcidid>https://orcid.org/0000-0002-8548-7078</orcidid></search><sort><creationdate>2022</creationdate><title>Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform</title><author>Alshammari, Saleh ; Iqbal, Naveed ; Yar, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-cf7960bf458f1bc0534751faf4cb3c53d5b7cae72c047167d9c5221d3bdf29103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calculus</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Differential equations</topic><topic>Error analysis</topic><topic>Exact solutions</topic><topic>Fractional calculus</topic><topic>Integral transforms</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alshammari, Saleh</creatorcontrib><creatorcontrib>Iqbal, Naveed</creatorcontrib><creatorcontrib>Yar, Mohammad</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alshammari, Saleh</au><au>Iqbal, Naveed</au><au>Yar, Mohammad</au><au>Gurefe, Yusuf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform</atitle><jtitle>Journal of function spaces</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>We use a new integral transform approach to solve the fractional Harry Dym equation and fractional Rosenau-Hyman equation in this work. The Elzaki transform and the integral transformation are combined in the suggested method (ET). To handle two nonlinear problems, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu fractional derivative (ABFD). The ultimate purpose of this study is to find an error analysis that demonstrates that our final result converges to the exact and approximate result. The convergent series form solution demonstrates the method’s efficiency in resolving several types of fractional differential equations. Furthermore, the solutions obtained in this study agree well with the exact solutions; thus, this strategy is powerful and efficient as an alternate way for obtaining approximate solutions to both linear and nonlinear fractional differential equations.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/8736030</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9604-1680</orcidid><orcidid>https://orcid.org/0000-0003-3846-0128</orcidid><orcidid>https://orcid.org/0000-0002-8548-7078</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-8896 |
ispartof | Journal of function spaces, 2022, Vol.2022, p.1-12 |
issn | 2314-8896 2314-8888 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cae6424dd05c4140b4af856096334c63 |
source | Publicly Available Content (ProQuest); Wiley Open Access |
subjects | Calculus Control theory Convergence Decomposition Differential equations Error analysis Exact solutions Fractional calculus Integral transforms Mathematical analysis Partial differential equations |
title | Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Investigation%20of%20Nonlinear%20Fractional%20Harry%20Dym%20and%20Rosenau-Hyman%20Equation%20via%20a%20Novel%20Transform&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Alshammari,%20Saleh&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/2022/8736030&rft_dat=%3Cproquest_doaj_%3E2715335977%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-cf7960bf458f1bc0534751faf4cb3c53d5b7cae72c047167d9c5221d3bdf29103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2715335977&rft_id=info:pmid/&rfr_iscdi=true |