Loading…

Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles

Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression p...

Full description

Saved in:
Bibliographic Details
Published in:EBioMedicine 2019-10, Vol.48, p.58-69
Main Authors: Dubois, Sydney, Tesson, Bruno, Mareschal, Sylvain, Viailly, Pierre-Julien, Bohers, Elodie, Ruminy, Philippe, Etancelin, Pascaline, Peyrouze, Pauline, Copie-Bergman, Christiane, Fabiani, Bettina, Petrella, Tony, Jais, Jean-Philippe, Haioun, Corinne, Salles, Gilles, Molina, Thierry Jo, Leroy, Karen, Tilly, Hervé, Jardin, Fabrice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c559t-1818efe691d2e25cf968b638c788363391e83dae8c95d5d9b0c397a8ac710383
cites cdi_FETCH-LOGICAL-c559t-1818efe691d2e25cf968b638c788363391e83dae8c95d5d9b0c397a8ac710383
container_end_page 69
container_issue
container_start_page 58
container_title EBioMedicine
container_volume 48
creator Dubois, Sydney
Tesson, Bruno
Mareschal, Sylvain
Viailly, Pierre-Julien
Bohers, Elodie
Ruminy, Philippe
Etancelin, Pascaline
Peyrouze, Pauline
Copie-Bergman, Christiane
Fabiani, Bettina
Petrella, Tony
Jais, Jean-Philippe
Haioun, Corinne
Salles, Gilles
Molina, Thierry Jo
Leroy, Karen
Tilly, Hervé
Jardin, Fabrice
description Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.
doi_str_mv 10.1016/j.ebiom.2019.09.034
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_caebab5f1252465bacdc086f8e883197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352396419306619</els_id><doaj_id>oai_doaj_org_article_caebab5f1252465bacdc086f8e883197</doaj_id><sourcerecordid>2309504223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-1818efe691d2e25cf968b638c788363391e83dae8c95d5d9b0c397a8ac710383</originalsourceid><addsrcrecordid>eNp9kk1r3DAQhk1paUKaX1AoPrYHb_VhaaVDC2lom8BCoeSuyvLIq0W2XMle2H9fOU5D0kNhQGL0zjNo5i2KtxhtMML842EDjQv9hiAsNygHrV8U54QyUlHJ65dP7mfFZUoHhBBmdU6K18UZxbwWUvDz4tdPsG5wQ1e2zto5Qel17KD8UhnwvvSnftyHXpdpbroY5jGVc1rUbpigi3qCttSD9qfkUhls2QcPZs6IcozBOg_pTfHKap_g8uG8KO6-fb27vql2P77fXl_tKsOYnCossAALXOKWAGHGSi4aToXZCkE5pRKDoK0GYSRrWSsbZKjcaqHNFiMq6EVxu2LboA9qjK7X8aSCduo-EWKndJyc8aCMhkY3zGLCSM1Zo01rkOBWQG6F5TazPq-scW56aA0MU9T-GfT5y-D2qgtHxQUVNV0AH1bA_p-ym6udWnKI0DovQxxx1r5_aBbD7xnSpHqXltnrAcKcFKFIMlQTQrOUrlITQ0oR7CMbI7W4Qh3UvSvU4gqFctA6V717-pvHmr8eyIJPqwDyeo4OokrGwWCgdRHMlAfo_tvgD_nVyr8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309504223</pqid></control><display><type>article</type><title>Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles</title><source>NCBI_PubMed Central(免费)</source><source>ScienceDirect Journals</source><creator>Dubois, Sydney ; Tesson, Bruno ; Mareschal, Sylvain ; Viailly, Pierre-Julien ; Bohers, Elodie ; Ruminy, Philippe ; Etancelin, Pascaline ; Peyrouze, Pauline ; Copie-Bergman, Christiane ; Fabiani, Bettina ; Petrella, Tony ; Jais, Jean-Philippe ; Haioun, Corinne ; Salles, Gilles ; Molina, Thierry Jo ; Leroy, Karen ; Tilly, Hervé ; Jardin, Fabrice</creator><creatorcontrib>Dubois, Sydney ; Tesson, Bruno ; Mareschal, Sylvain ; Viailly, Pierre-Julien ; Bohers, Elodie ; Ruminy, Philippe ; Etancelin, Pascaline ; Peyrouze, Pauline ; Copie-Bergman, Christiane ; Fabiani, Bettina ; Petrella, Tony ; Jais, Jean-Philippe ; Haioun, Corinne ; Salles, Gilles ; Molina, Thierry Jo ; Leroy, Karen ; Tilly, Hervé ; Jardin, Fabrice ; Lymphoma Study Association (LYSA) investigators</creatorcontrib><description>Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.</description><identifier>ISSN: 2352-3964</identifier><identifier>EISSN: 2352-3964</identifier><identifier>DOI: 10.1016/j.ebiom.2019.09.034</identifier><identifier>PMID: 31648986</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biochemistry, Molecular Biology ; Biomarkers, Tumor ; Cancer ; Chromosome Mapping ; Computational Biology - methods ; Diffuse large B-cell lymphoma ; DNA Copy Number Variations ; Female ; Gene Expression Profiling - methods ; Gene signatures, prognosis ; Genetic Association Studies ; Genetic Predisposition to Disease ; Genomics ; Hematology ; Human health and pathology ; Humans ; Immunohistochemistry ; Independent component analysis ; Life Sciences ; Lymphoma, Large B-Cell, Diffuse - diagnosis ; Lymphoma, Large B-Cell, Diffuse - genetics ; Male ; Molecular Sequence Annotation ; Research paper ; Transcriptome ; Transcriptomic variability</subject><ispartof>EBioMedicine, 2019-10, Vol.48, p.58-69</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-1818efe691d2e25cf968b638c788363391e83dae8c95d5d9b0c397a8ac710383</citedby><cites>FETCH-LOGICAL-c559t-1818efe691d2e25cf968b638c788363391e83dae8c95d5d9b0c397a8ac710383</cites><orcidid>0000-0002-9636-8971 ; 0000-0001-9168-576X ; 0000-0002-0109-6820 ; 0000-0002-4379-0140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352396419306619$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31648986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02345428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubois, Sydney</creatorcontrib><creatorcontrib>Tesson, Bruno</creatorcontrib><creatorcontrib>Mareschal, Sylvain</creatorcontrib><creatorcontrib>Viailly, Pierre-Julien</creatorcontrib><creatorcontrib>Bohers, Elodie</creatorcontrib><creatorcontrib>Ruminy, Philippe</creatorcontrib><creatorcontrib>Etancelin, Pascaline</creatorcontrib><creatorcontrib>Peyrouze, Pauline</creatorcontrib><creatorcontrib>Copie-Bergman, Christiane</creatorcontrib><creatorcontrib>Fabiani, Bettina</creatorcontrib><creatorcontrib>Petrella, Tony</creatorcontrib><creatorcontrib>Jais, Jean-Philippe</creatorcontrib><creatorcontrib>Haioun, Corinne</creatorcontrib><creatorcontrib>Salles, Gilles</creatorcontrib><creatorcontrib>Molina, Thierry Jo</creatorcontrib><creatorcontrib>Leroy, Karen</creatorcontrib><creatorcontrib>Tilly, Hervé</creatorcontrib><creatorcontrib>Jardin, Fabrice</creatorcontrib><creatorcontrib>Lymphoma Study Association (LYSA) investigators</creatorcontrib><title>Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles</title><title>EBioMedicine</title><addtitle>EBioMedicine</addtitle><description>Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.</description><subject>Biochemistry, Molecular Biology</subject><subject>Biomarkers, Tumor</subject><subject>Cancer</subject><subject>Chromosome Mapping</subject><subject>Computational Biology - methods</subject><subject>Diffuse large B-cell lymphoma</subject><subject>DNA Copy Number Variations</subject><subject>Female</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene signatures, prognosis</subject><subject>Genetic Association Studies</subject><subject>Genetic Predisposition to Disease</subject><subject>Genomics</subject><subject>Hematology</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Independent component analysis</subject><subject>Life Sciences</subject><subject>Lymphoma, Large B-Cell, Diffuse - diagnosis</subject><subject>Lymphoma, Large B-Cell, Diffuse - genetics</subject><subject>Male</subject><subject>Molecular Sequence Annotation</subject><subject>Research paper</subject><subject>Transcriptome</subject><subject>Transcriptomic variability</subject><issn>2352-3964</issn><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kk1r3DAQhk1paUKaX1AoPrYHb_VhaaVDC2lom8BCoeSuyvLIq0W2XMle2H9fOU5D0kNhQGL0zjNo5i2KtxhtMML842EDjQv9hiAsNygHrV8U54QyUlHJ65dP7mfFZUoHhBBmdU6K18UZxbwWUvDz4tdPsG5wQ1e2zto5Qel17KD8UhnwvvSnftyHXpdpbroY5jGVc1rUbpigi3qCttSD9qfkUhls2QcPZs6IcozBOg_pTfHKap_g8uG8KO6-fb27vql2P77fXl_tKsOYnCossAALXOKWAGHGSi4aToXZCkE5pRKDoK0GYSRrWSsbZKjcaqHNFiMq6EVxu2LboA9qjK7X8aSCduo-EWKndJyc8aCMhkY3zGLCSM1Zo01rkOBWQG6F5TazPq-scW56aA0MU9T-GfT5y-D2qgtHxQUVNV0AH1bA_p-ym6udWnKI0DovQxxx1r5_aBbD7xnSpHqXltnrAcKcFKFIMlQTQrOUrlITQ0oR7CMbI7W4Qh3UvSvU4gqFctA6V717-pvHmr8eyIJPqwDyeo4OokrGwWCgdRHMlAfo_tvgD_nVyr8</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Dubois, Sydney</creator><creator>Tesson, Bruno</creator><creator>Mareschal, Sylvain</creator><creator>Viailly, Pierre-Julien</creator><creator>Bohers, Elodie</creator><creator>Ruminy, Philippe</creator><creator>Etancelin, Pascaline</creator><creator>Peyrouze, Pauline</creator><creator>Copie-Bergman, Christiane</creator><creator>Fabiani, Bettina</creator><creator>Petrella, Tony</creator><creator>Jais, Jean-Philippe</creator><creator>Haioun, Corinne</creator><creator>Salles, Gilles</creator><creator>Molina, Thierry Jo</creator><creator>Leroy, Karen</creator><creator>Tilly, Hervé</creator><creator>Jardin, Fabrice</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9636-8971</orcidid><orcidid>https://orcid.org/0000-0001-9168-576X</orcidid><orcidid>https://orcid.org/0000-0002-0109-6820</orcidid><orcidid>https://orcid.org/0000-0002-4379-0140</orcidid></search><sort><creationdate>20191001</creationdate><title>Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles</title><author>Dubois, Sydney ; Tesson, Bruno ; Mareschal, Sylvain ; Viailly, Pierre-Julien ; Bohers, Elodie ; Ruminy, Philippe ; Etancelin, Pascaline ; Peyrouze, Pauline ; Copie-Bergman, Christiane ; Fabiani, Bettina ; Petrella, Tony ; Jais, Jean-Philippe ; Haioun, Corinne ; Salles, Gilles ; Molina, Thierry Jo ; Leroy, Karen ; Tilly, Hervé ; Jardin, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-1818efe691d2e25cf968b638c788363391e83dae8c95d5d9b0c397a8ac710383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Biomarkers, Tumor</topic><topic>Cancer</topic><topic>Chromosome Mapping</topic><topic>Computational Biology - methods</topic><topic>Diffuse large B-cell lymphoma</topic><topic>DNA Copy Number Variations</topic><topic>Female</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene signatures, prognosis</topic><topic>Genetic Association Studies</topic><topic>Genetic Predisposition to Disease</topic><topic>Genomics</topic><topic>Hematology</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Independent component analysis</topic><topic>Life Sciences</topic><topic>Lymphoma, Large B-Cell, Diffuse - diagnosis</topic><topic>Lymphoma, Large B-Cell, Diffuse - genetics</topic><topic>Male</topic><topic>Molecular Sequence Annotation</topic><topic>Research paper</topic><topic>Transcriptome</topic><topic>Transcriptomic variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubois, Sydney</creatorcontrib><creatorcontrib>Tesson, Bruno</creatorcontrib><creatorcontrib>Mareschal, Sylvain</creatorcontrib><creatorcontrib>Viailly, Pierre-Julien</creatorcontrib><creatorcontrib>Bohers, Elodie</creatorcontrib><creatorcontrib>Ruminy, Philippe</creatorcontrib><creatorcontrib>Etancelin, Pascaline</creatorcontrib><creatorcontrib>Peyrouze, Pauline</creatorcontrib><creatorcontrib>Copie-Bergman, Christiane</creatorcontrib><creatorcontrib>Fabiani, Bettina</creatorcontrib><creatorcontrib>Petrella, Tony</creatorcontrib><creatorcontrib>Jais, Jean-Philippe</creatorcontrib><creatorcontrib>Haioun, Corinne</creatorcontrib><creatorcontrib>Salles, Gilles</creatorcontrib><creatorcontrib>Molina, Thierry Jo</creatorcontrib><creatorcontrib>Leroy, Karen</creatorcontrib><creatorcontrib>Tilly, Hervé</creatorcontrib><creatorcontrib>Jardin, Fabrice</creatorcontrib><creatorcontrib>Lymphoma Study Association (LYSA) investigators</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubois, Sydney</au><au>Tesson, Bruno</au><au>Mareschal, Sylvain</au><au>Viailly, Pierre-Julien</au><au>Bohers, Elodie</au><au>Ruminy, Philippe</au><au>Etancelin, Pascaline</au><au>Peyrouze, Pauline</au><au>Copie-Bergman, Christiane</au><au>Fabiani, Bettina</au><au>Petrella, Tony</au><au>Jais, Jean-Philippe</au><au>Haioun, Corinne</au><au>Salles, Gilles</au><au>Molina, Thierry Jo</au><au>Leroy, Karen</au><au>Tilly, Hervé</au><au>Jardin, Fabrice</au><aucorp>Lymphoma Study Association (LYSA) investigators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles</atitle><jtitle>EBioMedicine</jtitle><addtitle>EBioMedicine</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>48</volume><spage>58</spage><epage>69</epage><pages>58-69</pages><issn>2352-3964</issn><eissn>2352-3964</eissn><abstract>Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31648986</pmid><doi>10.1016/j.ebiom.2019.09.034</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9636-8971</orcidid><orcidid>https://orcid.org/0000-0001-9168-576X</orcidid><orcidid>https://orcid.org/0000-0002-0109-6820</orcidid><orcidid>https://orcid.org/0000-0002-4379-0140</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-3964
ispartof EBioMedicine, 2019-10, Vol.48, p.58-69
issn 2352-3964
2352-3964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_caebab5f1252465bacdc086f8e883197
source NCBI_PubMed Central(免费); ScienceDirect Journals
subjects Biochemistry, Molecular Biology
Biomarkers, Tumor
Cancer
Chromosome Mapping
Computational Biology - methods
Diffuse large B-cell lymphoma
DNA Copy Number Variations
Female
Gene Expression Profiling - methods
Gene signatures, prognosis
Genetic Association Studies
Genetic Predisposition to Disease
Genomics
Hematology
Human health and pathology
Humans
Immunohistochemistry
Independent component analysis
Life Sciences
Lymphoma, Large B-Cell, Diffuse - diagnosis
Lymphoma, Large B-Cell, Diffuse - genetics
Male
Molecular Sequence Annotation
Research paper
Transcriptome
Transcriptomic variability
title Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refining%20diffuse%20large%20B-cell%20lymphoma%20subgroups%20using%20integrated%20analysis%20of%20molecular%20profiles&rft.jtitle=EBioMedicine&rft.au=Dubois,%20Sydney&rft.aucorp=Lymphoma%20Study%20Association%20(LYSA)%20investigators&rft.date=2019-10-01&rft.volume=48&rft.spage=58&rft.epage=69&rft.pages=58-69&rft.issn=2352-3964&rft.eissn=2352-3964&rft_id=info:doi/10.1016/j.ebiom.2019.09.034&rft_dat=%3Cproquest_doaj_%3E2309504223%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-1818efe691d2e25cf968b638c788363391e83dae8c95d5d9b0c397a8ac710383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309504223&rft_id=info:pmid/31648986&rfr_iscdi=true