Loading…

Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival

We recently reported that oxidized LDL (oxLDL) induces an oscillatory increase in intracellular calcium ([Ca2+]i) levels in macrophages. Furthermore, we have shown that these [Ca2+]i oscillations mediate oxLDL's ability to inhibit macrophage apoptosis in response to growth factor deprivation. H...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2010-05, Vol.51 (5), p.991-998
Main Authors: Chen, Johnny H., Riazy, Maziar, Wang, Shih Wei, Dai, Jiazhen Minnie, Duronio, Vincent, Steinbrecher, Urs P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-6468d38510f6861a3906b31247099cf7059174cc4d39eb97d169c063e51f09c83
cites cdi_FETCH-LOGICAL-c492t-6468d38510f6861a3906b31247099cf7059174cc4d39eb97d169c063e51f09c83
container_end_page 998
container_issue 5
container_start_page 991
container_title Journal of lipid research
container_volume 51
creator Chen, Johnny H.
Riazy, Maziar
Wang, Shih Wei
Dai, Jiazhen Minnie
Duronio, Vincent
Steinbrecher, Urs P.
description We recently reported that oxidized LDL (oxLDL) induces an oscillatory increase in intracellular calcium ([Ca2+]i) levels in macrophages. Furthermore, we have shown that these [Ca2+]i oscillations mediate oxLDL's ability to inhibit macrophage apoptosis in response to growth factor deprivation. However, the signal transduction pathways by which oxLDL induces [Ca2+]i oscillations have not been elucidated. In this study, we show that these oscillations are mediated in part by intracellular mechanisms, as depleting extracellular Ca2+ did not completely abolish the effect. Inhibiting sarco-endoplasmic reticulum ATPase (SERCA) completely blocked [Ca2+]i oscillations, suggesting a role for Ca2+ reuptake by the ER. The addition of oxLDL resulted in an almost immediate activation of sphingosine kinase (SK), which can increase sphingosine-1-phosphate (S1P) levels by phosphorylating sphingosine. Moreover, S1P was shown to be as effective as oxLDL in blocking macrophage apoptosis and producing [Ca2+]i oscillations. This suggests that the mechanism in which oxLDL generates [Ca2+]i oscillations may be 1) activation of SK, 2) SK-mediated increase in S1P levels, 3) S1P-mediated Ca2+ release from intracellular stores, and 4) SERCA-mediated Ca2+ reuptake back into the ER.
doi_str_mv 10.1194/jlr.M000398
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_caf7024780d24ee58ff7199ef38990ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022227520410545</els_id><doaj_id>oai_doaj_org_article_caf7024780d24ee58ff7199ef38990ed</doaj_id><sourcerecordid>733639962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-6468d38510f6861a3906b31247099cf7059174cc4d39eb97d169c063e51f09c83</originalsourceid><addsrcrecordid>eNptkc-P1CAYhonRuOPqybvh5sF05VdpuZiYzaqbrPGgngkDXzuMFCq0o-tfLzoTdRNPJPDy8PE-CD2l5IJSJV7uQ754Twjhqr-HNrTlqumYZPfRhhDGGsa69gw9KmVPCBVC0ofojColW0n5BpWP887HMRUfAX_x0RTAGcY1mAUKTt-98z_A4ZC-YQex-OUWBz-nOacFfGwmcL4mHbYmWL9OOBXrQ73sUyzYRIcnY3Oad2YEXNZ88AcTHqMHgwkFnpzWc_T5zdWny3fNzYe315evbxorFFsaKWTveN9SMsheUsMVkVtOmeiIUnboSKtoJ6wVjivYqs5RqSyRHFo6EGV7fo6uj1yXzF7P2U8m3-pkvP69kfKoTV68DaCtqbxK7oljAqDth6GrJcHAe6UIuMp6dWTN67Z-2kJcsgl3oHdPot_pMR0061suZFcBz0-AnL6uUBY9-WKhdhUhrUV3nEtetbCafHFM1uJKyTD8eYUS_cu4rsb1yXhNP_t3sL_Zk-IaaI8BqFUfPGRdFUG01VwGu9Qu_H_BPwFxA7xB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733639962</pqid></control><display><type>article</type><title>Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Chen, Johnny H. ; Riazy, Maziar ; Wang, Shih Wei ; Dai, Jiazhen Minnie ; Duronio, Vincent ; Steinbrecher, Urs P.</creator><creatorcontrib>Chen, Johnny H. ; Riazy, Maziar ; Wang, Shih Wei ; Dai, Jiazhen Minnie ; Duronio, Vincent ; Steinbrecher, Urs P.</creatorcontrib><description>We recently reported that oxidized LDL (oxLDL) induces an oscillatory increase in intracellular calcium ([Ca2+]i) levels in macrophages. Furthermore, we have shown that these [Ca2+]i oscillations mediate oxLDL's ability to inhibit macrophage apoptosis in response to growth factor deprivation. However, the signal transduction pathways by which oxLDL induces [Ca2+]i oscillations have not been elucidated. In this study, we show that these oscillations are mediated in part by intracellular mechanisms, as depleting extracellular Ca2+ did not completely abolish the effect. Inhibiting sarco-endoplasmic reticulum ATPase (SERCA) completely blocked [Ca2+]i oscillations, suggesting a role for Ca2+ reuptake by the ER. The addition of oxLDL resulted in an almost immediate activation of sphingosine kinase (SK), which can increase sphingosine-1-phosphate (S1P) levels by phosphorylating sphingosine. Moreover, S1P was shown to be as effective as oxLDL in blocking macrophage apoptosis and producing [Ca2+]i oscillations. This suggests that the mechanism in which oxLDL generates [Ca2+]i oscillations may be 1) activation of SK, 2) SK-mediated increase in S1P levels, 3) S1P-mediated Ca2+ release from intracellular stores, and 4) SERCA-mediated Ca2+ reuptake back into the ER.</description><identifier>ISSN: 0022-2275</identifier><identifier>EISSN: 1539-7262</identifier><identifier>DOI: 10.1194/jlr.M000398</identifier><identifier>PMID: 19965613</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biological Transport - drug effects ; calcium ; Calcium - metabolism ; Calcium Channel Blockers - pharmacology ; Cell Line ; Cell Survival - drug effects ; Endoplasmic Reticulum - metabolism ; Enzyme Activation - drug effects ; Extracellular Space - drug effects ; Extracellular Space - metabolism ; Female ; foam cells ; Humans ; Lipoproteins, LDL - pharmacology ; Lysophosphatidylcholines - metabolism ; Lysophospholipids - metabolism ; Macrophages - cytology ; Macrophages - drug effects ; Macrophages - metabolism ; Mice ; Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; plaque stability ; Ryanodine Receptor Calcium Release Channel - metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism ; Sphingosine - analogs &amp; derivatives ; Sphingosine - metabolism ; sphingosine-1-phosphate ; Thapsigargin - pharmacology ; Type C Phospholipases - antagonists &amp; inhibitors</subject><ispartof>Journal of lipid research, 2010-05, Vol.51 (5), p.991-998</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-6468d38510f6861a3906b31247099cf7059174cc4d39eb97d169c063e51f09c83</citedby><cites>FETCH-LOGICAL-c492t-6468d38510f6861a3906b31247099cf7059174cc4d39eb97d169c063e51f09c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853467/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022227520410545$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45779,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19965613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Johnny H.</creatorcontrib><creatorcontrib>Riazy, Maziar</creatorcontrib><creatorcontrib>Wang, Shih Wei</creatorcontrib><creatorcontrib>Dai, Jiazhen Minnie</creatorcontrib><creatorcontrib>Duronio, Vincent</creatorcontrib><creatorcontrib>Steinbrecher, Urs P.</creatorcontrib><title>Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival</title><title>Journal of lipid research</title><addtitle>J Lipid Res</addtitle><description>We recently reported that oxidized LDL (oxLDL) induces an oscillatory increase in intracellular calcium ([Ca2+]i) levels in macrophages. Furthermore, we have shown that these [Ca2+]i oscillations mediate oxLDL's ability to inhibit macrophage apoptosis in response to growth factor deprivation. However, the signal transduction pathways by which oxLDL induces [Ca2+]i oscillations have not been elucidated. In this study, we show that these oscillations are mediated in part by intracellular mechanisms, as depleting extracellular Ca2+ did not completely abolish the effect. Inhibiting sarco-endoplasmic reticulum ATPase (SERCA) completely blocked [Ca2+]i oscillations, suggesting a role for Ca2+ reuptake by the ER. The addition of oxLDL resulted in an almost immediate activation of sphingosine kinase (SK), which can increase sphingosine-1-phosphate (S1P) levels by phosphorylating sphingosine. Moreover, S1P was shown to be as effective as oxLDL in blocking macrophage apoptosis and producing [Ca2+]i oscillations. This suggests that the mechanism in which oxLDL generates [Ca2+]i oscillations may be 1) activation of SK, 2) SK-mediated increase in S1P levels, 3) S1P-mediated Ca2+ release from intracellular stores, and 4) SERCA-mediated Ca2+ reuptake back into the ER.</description><subject>Animals</subject><subject>Biological Transport - drug effects</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Enzyme Activation - drug effects</subject><subject>Extracellular Space - drug effects</subject><subject>Extracellular Space - metabolism</subject><subject>Female</subject><subject>foam cells</subject><subject>Humans</subject><subject>Lipoproteins, LDL - pharmacology</subject><subject>Lysophosphatidylcholines - metabolism</subject><subject>Lysophospholipids - metabolism</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>plaque stability</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - metabolism</subject><subject>sphingosine-1-phosphate</subject><subject>Thapsigargin - pharmacology</subject><subject>Type C Phospholipases - antagonists &amp; inhibitors</subject><issn>0022-2275</issn><issn>1539-7262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkc-P1CAYhonRuOPqybvh5sF05VdpuZiYzaqbrPGgngkDXzuMFCq0o-tfLzoTdRNPJPDy8PE-CD2l5IJSJV7uQ754Twjhqr-HNrTlqumYZPfRhhDGGsa69gw9KmVPCBVC0ofojColW0n5BpWP887HMRUfAX_x0RTAGcY1mAUKTt-98z_A4ZC-YQex-OUWBz-nOacFfGwmcL4mHbYmWL9OOBXrQ73sUyzYRIcnY3Oad2YEXNZ88AcTHqMHgwkFnpzWc_T5zdWny3fNzYe315evbxorFFsaKWTveN9SMsheUsMVkVtOmeiIUnboSKtoJ6wVjivYqs5RqSyRHFo6EGV7fo6uj1yXzF7P2U8m3-pkvP69kfKoTV68DaCtqbxK7oljAqDth6GrJcHAe6UIuMp6dWTN67Z-2kJcsgl3oHdPot_pMR0061suZFcBz0-AnL6uUBY9-WKhdhUhrUV3nEtetbCafHFM1uJKyTD8eYUS_cu4rsb1yXhNP_t3sL_Zk-IaaI8BqFUfPGRdFUG01VwGu9Qu_H_BPwFxA7xB</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Chen, Johnny H.</creator><creator>Riazy, Maziar</creator><creator>Wang, Shih Wei</creator><creator>Dai, Jiazhen Minnie</creator><creator>Duronio, Vincent</creator><creator>Steinbrecher, Urs P.</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>201005</creationdate><title>Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival</title><author>Chen, Johnny H. ; Riazy, Maziar ; Wang, Shih Wei ; Dai, Jiazhen Minnie ; Duronio, Vincent ; Steinbrecher, Urs P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-6468d38510f6861a3906b31247099cf7059174cc4d39eb97d169c063e51f09c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biological Transport - drug effects</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Enzyme Activation - drug effects</topic><topic>Extracellular Space - drug effects</topic><topic>Extracellular Space - metabolism</topic><topic>Female</topic><topic>foam cells</topic><topic>Humans</topic><topic>Lipoproteins, LDL - pharmacology</topic><topic>Lysophosphatidylcholines - metabolism</topic><topic>Lysophospholipids - metabolism</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>plaque stability</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - metabolism</topic><topic>sphingosine-1-phosphate</topic><topic>Thapsigargin - pharmacology</topic><topic>Type C Phospholipases - antagonists &amp; inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Johnny H.</creatorcontrib><creatorcontrib>Riazy, Maziar</creatorcontrib><creatorcontrib>Wang, Shih Wei</creatorcontrib><creatorcontrib>Dai, Jiazhen Minnie</creatorcontrib><creatorcontrib>Duronio, Vincent</creatorcontrib><creatorcontrib>Steinbrecher, Urs P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of lipid research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Johnny H.</au><au>Riazy, Maziar</au><au>Wang, Shih Wei</au><au>Dai, Jiazhen Minnie</au><au>Duronio, Vincent</au><au>Steinbrecher, Urs P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival</atitle><jtitle>Journal of lipid research</jtitle><addtitle>J Lipid Res</addtitle><date>2010-05</date><risdate>2010</risdate><volume>51</volume><issue>5</issue><spage>991</spage><epage>998</epage><pages>991-998</pages><issn>0022-2275</issn><eissn>1539-7262</eissn><abstract>We recently reported that oxidized LDL (oxLDL) induces an oscillatory increase in intracellular calcium ([Ca2+]i) levels in macrophages. Furthermore, we have shown that these [Ca2+]i oscillations mediate oxLDL's ability to inhibit macrophage apoptosis in response to growth factor deprivation. However, the signal transduction pathways by which oxLDL induces [Ca2+]i oscillations have not been elucidated. In this study, we show that these oscillations are mediated in part by intracellular mechanisms, as depleting extracellular Ca2+ did not completely abolish the effect. Inhibiting sarco-endoplasmic reticulum ATPase (SERCA) completely blocked [Ca2+]i oscillations, suggesting a role for Ca2+ reuptake by the ER. The addition of oxLDL resulted in an almost immediate activation of sphingosine kinase (SK), which can increase sphingosine-1-phosphate (S1P) levels by phosphorylating sphingosine. Moreover, S1P was shown to be as effective as oxLDL in blocking macrophage apoptosis and producing [Ca2+]i oscillations. This suggests that the mechanism in which oxLDL generates [Ca2+]i oscillations may be 1) activation of SK, 2) SK-mediated increase in S1P levels, 3) S1P-mediated Ca2+ release from intracellular stores, and 4) SERCA-mediated Ca2+ reuptake back into the ER.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19965613</pmid><doi>10.1194/jlr.M000398</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2275
ispartof Journal of lipid research, 2010-05, Vol.51 (5), p.991-998
issn 0022-2275
1539-7262
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_caf7024780d24ee58ff7199ef38990ed
source Elsevier ScienceDirect Journals; PubMed Central
subjects Animals
Biological Transport - drug effects
calcium
Calcium - metabolism
Calcium Channel Blockers - pharmacology
Cell Line
Cell Survival - drug effects
Endoplasmic Reticulum - metabolism
Enzyme Activation - drug effects
Extracellular Space - drug effects
Extracellular Space - metabolism
Female
foam cells
Humans
Lipoproteins, LDL - pharmacology
Lysophosphatidylcholines - metabolism
Lysophospholipids - metabolism
Macrophages - cytology
Macrophages - drug effects
Macrophages - metabolism
Mice
Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors
Phosphotransferases (Alcohol Group Acceptor) - metabolism
plaque stability
Ryanodine Receptor Calcium Release Channel - metabolism
Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism
Sphingosine - analogs & derivatives
Sphingosine - metabolism
sphingosine-1-phosphate
Thapsigargin - pharmacology
Type C Phospholipases - antagonists & inhibitors
title Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingosine%20kinase%20regulates%20oxidized%20low%20density%20lipoprotein-mediated%20calcium%20oscillations%20and%20macrophage%20survival&rft.jtitle=Journal%20of%20lipid%20research&rft.au=Chen,%20Johnny%20H.&rft.date=2010-05&rft.volume=51&rft.issue=5&rft.spage=991&rft.epage=998&rft.pages=991-998&rft.issn=0022-2275&rft.eissn=1539-7262&rft_id=info:doi/10.1194/jlr.M000398&rft_dat=%3Cproquest_doaj_%3E733639962%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-6468d38510f6861a3906b31247099cf7059174cc4d39eb97d169c063e51f09c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733639962&rft_id=info:pmid/19965613&rfr_iscdi=true