Loading…

Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test

Phosphorus (P) can limit crop production in many soils, and soil testing is used to guide fertilizer recommendations. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis for P, or by inductively coupled plasma-based spectrometry (ICP) for P and cations....

Full description

Saved in:
Bibliographic Details
Published in:Geochemical transactions GT 2018-02, Vol.19 (1), p.7-17, Article 7
Main Authors: Cade-Menun, Barbara J., Elkin, Kyle R., Liu, Corey W., Bryant, Ray B., Kleinman, Peter J. A., Moore, Philip A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phosphorus (P) can limit crop production in many soils, and soil testing is used to guide fertilizer recommendations. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis for P, or by inductively coupled plasma-based spectrometry (ICP) for P and cations. However, differences have been observed in M3 P concentrations measured by these methods. Using 31 P nuclear magnetic resonance (P-NMR) and mass spectrometry (MS), we characterized P forms in M3 extracts. In addition to the orthophosphate that would be detected during colorimetric analysis, several organic P forms were present in M3 extracts that would be unreactive colorimetrically but measured by ICP (molybdate unreactive P, MUP). Extraction of these P forms by M3 was confirmed by P-NMR and MS in NaOH-ethylenediaminetetraacetic acid extracts of whole soils and residues after M3 extraction. The most abundant P form in M3 extracts was myo -inositol hexaphosphate ( myo -IHP, phytate), a compound that may not contribute to plant-available P if tightly sorbed in soil. Concentrations of myo -IHP and other organic P forms varied among soils, and even among treatment plots on the same soil. Extraction of myo -IHP in M3 appeared to be linked to cations, with substantially more myo -IHP extracted from soils fertilized with alum-treated poultry litter than untreated litter. These results suggest that ICP analysis may substantially over-estimate plant-available P in samples with high MUP concentrations, but there is no way at present to determine MUP concentrations without analysis by both colorimetry and ICP. This study also tested procedures that will improve future soil P-NMR studies, such as treatment of acid extracts, and demonstrated that techniques such as P-NMR and MS are complimentary, each yielding additional information that analysis by a single technique may not provide.
ISSN:1467-4866
1467-4866
DOI:10.1186/s12932-018-0052-9