Loading…

Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice

Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounc...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-06, Vol.11 (21), p.e2400672-n/a
Main Authors: Betzold, Simon, Düreth, Johannes, Dusel, Marco, Emmerling, Monika, Bieganowska, Antonina, Ohmer, Jürgen, Fischer, Utz, Höfling, Sven, Klembt, Sebastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23
container_end_page n/a
container_issue 21
container_start_page e2400672
container_title Advanced science
container_volume 11
creator Betzold, Simon
Düreth, Johannes
Dusel, Marco
Emmerling, Monika
Bieganowska, Antonina
Ohmer, Jürgen
Fischer, Utz
Höfling, Sven
Klembt, Sebastian
description Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics. This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices.
doi_str_mv 10.1002/advs.202400672
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cb553ff91f85465e835de23030b237cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb553ff91f85465e835de23030b237cb</doaj_id><sourcerecordid>3064502489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23</originalsourceid><addsrcrecordid>eNqFkk1vEzEQQFcIRKvSK0dkiQuXBH-v94SqtNBKkYqgcOFg2d7Z4GjXDvZuqvx7HFKilgsnW_ab5xnPVNVrgucEY_retNs8p5hyjGVNn1WnlDRqxhTnzx_tT6rznNcYYyJYzYl6WZ0wJbGQNT-tflz6ZBxaxAAZmdCiLzEO6A6GDSQzTgnQ59ib5McY0NJkH1boautbCA5a5EMJQbdpZYJ36Lo4di4OtoDj6B28ql50ps9w_rCeVd8-Xt0trmfL2083i4vlzAnK5awmgLu6cZa0FotGcSj14K4hDYXOUmGVFZbUDWbUWQs1Y8CsMVwqXEvSUnZW3Ry8bTRrvUl-MGmno_H6z0FMK21SSagH7awQrCvuTgkuBSgmWqAMM2wpq50trg8H12ayA7QOwphM_0T69Cb4n3oVt5oQIgiW-2zePRhS_DVBHvXgs4O-NwHilHV5THFakt-jb_9B13FKofxVoSQXpbOqKdT8QLkUc07QHbMhWO_nQO_nQB_noAS8eVzDEf_b9QLwA3Dve9j9R6cvLr9_VZhJ9huHvbz-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064502489</pqid></control><display><type>article</type><title>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Betzold, Simon ; Düreth, Johannes ; Dusel, Marco ; Emmerling, Monika ; Bieganowska, Antonina ; Ohmer, Jürgen ; Fischer, Utz ; Höfling, Sven ; Klembt, Sebastian</creator><creatorcontrib>Betzold, Simon ; Düreth, Johannes ; Dusel, Marco ; Emmerling, Monika ; Bieganowska, Antonina ; Ohmer, Jürgen ; Fischer, Utz ; Höfling, Sven ; Klembt, Sebastian</creatorcontrib><description>Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics. This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202400672</identifier><identifier>PMID: 38605674</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Electrons ; Energy ; Glass substrates ; Graphene ; Ion beams ; Lasers ; Light ; microcavities ; optical lattices ; organic semiconductors ; polariton lasers ; Proteins ; quantum simulation ; Temperature</subject><ispartof>Advanced science, 2024-06, Vol.11 (21), p.e2400672-n/a</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23</cites><orcidid>0000-0002-1465-6591 ; 0000-0002-4387-8708 ; 0000-0001-9217-1832 ; 0000-0002-1431-5535 ; 0000-0003-3107-4574 ; 0000-0003-0034-4682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3064502489/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3064502489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,11549,25740,27911,27912,36999,37000,44577,46039,46463,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38605674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Betzold, Simon</creatorcontrib><creatorcontrib>Düreth, Johannes</creatorcontrib><creatorcontrib>Dusel, Marco</creatorcontrib><creatorcontrib>Emmerling, Monika</creatorcontrib><creatorcontrib>Bieganowska, Antonina</creatorcontrib><creatorcontrib>Ohmer, Jürgen</creatorcontrib><creatorcontrib>Fischer, Utz</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><title>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics. This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices.</description><subject>Electrons</subject><subject>Energy</subject><subject>Glass substrates</subject><subject>Graphene</subject><subject>Ion beams</subject><subject>Lasers</subject><subject>Light</subject><subject>microcavities</subject><subject>optical lattices</subject><subject>organic semiconductors</subject><subject>polariton lasers</subject><subject>Proteins</subject><subject>quantum simulation</subject><subject>Temperature</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1vEzEQQFcIRKvSK0dkiQuXBH-v94SqtNBKkYqgcOFg2d7Z4GjXDvZuqvx7HFKilgsnW_ab5xnPVNVrgucEY_retNs8p5hyjGVNn1WnlDRqxhTnzx_tT6rznNcYYyJYzYl6WZ0wJbGQNT-tflz6ZBxaxAAZmdCiLzEO6A6GDSQzTgnQ59ib5McY0NJkH1boautbCA5a5EMJQbdpZYJ36Lo4di4OtoDj6B28ql50ps9w_rCeVd8-Xt0trmfL2083i4vlzAnK5awmgLu6cZa0FotGcSj14K4hDYXOUmGVFZbUDWbUWQs1Y8CsMVwqXEvSUnZW3Ry8bTRrvUl-MGmno_H6z0FMK21SSagH7awQrCvuTgkuBSgmWqAMM2wpq50trg8H12ayA7QOwphM_0T69Cb4n3oVt5oQIgiW-2zePRhS_DVBHvXgs4O-NwHilHV5THFakt-jb_9B13FKofxVoSQXpbOqKdT8QLkUc07QHbMhWO_nQO_nQB_noAS8eVzDEf_b9QLwA3Dve9j9R6cvLr9_VZhJ9huHvbz-</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Betzold, Simon</creator><creator>Düreth, Johannes</creator><creator>Dusel, Marco</creator><creator>Emmerling, Monika</creator><creator>Bieganowska, Antonina</creator><creator>Ohmer, Jürgen</creator><creator>Fischer, Utz</creator><creator>Höfling, Sven</creator><creator>Klembt, Sebastian</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1465-6591</orcidid><orcidid>https://orcid.org/0000-0002-4387-8708</orcidid><orcidid>https://orcid.org/0000-0001-9217-1832</orcidid><orcidid>https://orcid.org/0000-0002-1431-5535</orcidid><orcidid>https://orcid.org/0000-0003-3107-4574</orcidid><orcidid>https://orcid.org/0000-0003-0034-4682</orcidid></search><sort><creationdate>20240601</creationdate><title>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</title><author>Betzold, Simon ; Düreth, Johannes ; Dusel, Marco ; Emmerling, Monika ; Bieganowska, Antonina ; Ohmer, Jürgen ; Fischer, Utz ; Höfling, Sven ; Klembt, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrons</topic><topic>Energy</topic><topic>Glass substrates</topic><topic>Graphene</topic><topic>Ion beams</topic><topic>Lasers</topic><topic>Light</topic><topic>microcavities</topic><topic>optical lattices</topic><topic>organic semiconductors</topic><topic>polariton lasers</topic><topic>Proteins</topic><topic>quantum simulation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betzold, Simon</creatorcontrib><creatorcontrib>Düreth, Johannes</creatorcontrib><creatorcontrib>Dusel, Marco</creatorcontrib><creatorcontrib>Emmerling, Monika</creatorcontrib><creatorcontrib>Bieganowska, Antonina</creatorcontrib><creatorcontrib>Ohmer, Jürgen</creatorcontrib><creatorcontrib>Fischer, Utz</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betzold, Simon</au><au>Düreth, Johannes</au><au>Dusel, Marco</au><au>Emmerling, Monika</au><au>Bieganowska, Antonina</au><au>Ohmer, Jürgen</au><au>Fischer, Utz</au><au>Höfling, Sven</au><au>Klembt, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>21</issue><spage>e2400672</spage><epage>n/a</epage><pages>e2400672-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics. This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38605674</pmid><doi>10.1002/advs.202400672</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1465-6591</orcidid><orcidid>https://orcid.org/0000-0002-4387-8708</orcidid><orcidid>https://orcid.org/0000-0001-9217-1832</orcidid><orcidid>https://orcid.org/0000-0002-1431-5535</orcidid><orcidid>https://orcid.org/0000-0003-3107-4574</orcidid><orcidid>https://orcid.org/0000-0003-0034-4682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-06, Vol.11 (21), p.e2400672-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cb553ff91f85465e835de23030b237cb
source Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central
subjects Electrons
Energy
Glass substrates
Graphene
Ion beams
Lasers
Light
microcavities
optical lattices
organic semiconductors
polariton lasers
Proteins
quantum simulation
Temperature
title Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirac%20Cones%20and%20Room%20Temperature%20Polariton%20Lasing%20Evidenced%20in%20an%20Organic%20Honeycomb%20Lattice&rft.jtitle=Advanced%20science&rft.au=Betzold,%20Simon&rft.date=2024-06-01&rft.volume=11&rft.issue=21&rft.spage=e2400672&rft.epage=n/a&rft.pages=e2400672-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202400672&rft_dat=%3Cproquest_doaj_%3E3064502489%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064502489&rft_id=info:pmid/38605674&rfr_iscdi=true