Loading…
Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice
Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounc...
Saved in:
Published in: | Advanced science 2024-06, Vol.11 (21), p.e2400672-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23 |
container_end_page | n/a |
container_issue | 21 |
container_start_page | e2400672 |
container_title | Advanced science |
container_volume | 11 |
creator | Betzold, Simon Düreth, Johannes Dusel, Marco Emmerling, Monika Bieganowska, Antonina Ohmer, Jürgen Fischer, Utz Höfling, Sven Klembt, Sebastian |
description | Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics.
This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices. |
doi_str_mv | 10.1002/advs.202400672 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cb553ff91f85465e835de23030b237cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb553ff91f85465e835de23030b237cb</doaj_id><sourcerecordid>3064502489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23</originalsourceid><addsrcrecordid>eNqFkk1vEzEQQFcIRKvSK0dkiQuXBH-v94SqtNBKkYqgcOFg2d7Z4GjXDvZuqvx7HFKilgsnW_ab5xnPVNVrgucEY_retNs8p5hyjGVNn1WnlDRqxhTnzx_tT6rznNcYYyJYzYl6WZ0wJbGQNT-tflz6ZBxaxAAZmdCiLzEO6A6GDSQzTgnQ59ib5McY0NJkH1boautbCA5a5EMJQbdpZYJ36Lo4di4OtoDj6B28ql50ps9w_rCeVd8-Xt0trmfL2083i4vlzAnK5awmgLu6cZa0FotGcSj14K4hDYXOUmGVFZbUDWbUWQs1Y8CsMVwqXEvSUnZW3Ry8bTRrvUl-MGmno_H6z0FMK21SSagH7awQrCvuTgkuBSgmWqAMM2wpq50trg8H12ayA7QOwphM_0T69Cb4n3oVt5oQIgiW-2zePRhS_DVBHvXgs4O-NwHilHV5THFakt-jb_9B13FKofxVoSQXpbOqKdT8QLkUc07QHbMhWO_nQO_nQB_noAS8eVzDEf_b9QLwA3Dve9j9R6cvLr9_VZhJ9huHvbz-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064502489</pqid></control><display><type>article</type><title>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Betzold, Simon ; Düreth, Johannes ; Dusel, Marco ; Emmerling, Monika ; Bieganowska, Antonina ; Ohmer, Jürgen ; Fischer, Utz ; Höfling, Sven ; Klembt, Sebastian</creator><creatorcontrib>Betzold, Simon ; Düreth, Johannes ; Dusel, Marco ; Emmerling, Monika ; Bieganowska, Antonina ; Ohmer, Jürgen ; Fischer, Utz ; Höfling, Sven ; Klembt, Sebastian</creatorcontrib><description>Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics.
This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202400672</identifier><identifier>PMID: 38605674</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Electrons ; Energy ; Glass substrates ; Graphene ; Ion beams ; Lasers ; Light ; microcavities ; optical lattices ; organic semiconductors ; polariton lasers ; Proteins ; quantum simulation ; Temperature</subject><ispartof>Advanced science, 2024-06, Vol.11 (21), p.e2400672-n/a</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23</cites><orcidid>0000-0002-1465-6591 ; 0000-0002-4387-8708 ; 0000-0001-9217-1832 ; 0000-0002-1431-5535 ; 0000-0003-3107-4574 ; 0000-0003-0034-4682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3064502489/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3064502489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,11549,25740,27911,27912,36999,37000,44577,46039,46463,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38605674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Betzold, Simon</creatorcontrib><creatorcontrib>Düreth, Johannes</creatorcontrib><creatorcontrib>Dusel, Marco</creatorcontrib><creatorcontrib>Emmerling, Monika</creatorcontrib><creatorcontrib>Bieganowska, Antonina</creatorcontrib><creatorcontrib>Ohmer, Jürgen</creatorcontrib><creatorcontrib>Fischer, Utz</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><title>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics.
This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices.</description><subject>Electrons</subject><subject>Energy</subject><subject>Glass substrates</subject><subject>Graphene</subject><subject>Ion beams</subject><subject>Lasers</subject><subject>Light</subject><subject>microcavities</subject><subject>optical lattices</subject><subject>organic semiconductors</subject><subject>polariton lasers</subject><subject>Proteins</subject><subject>quantum simulation</subject><subject>Temperature</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1vEzEQQFcIRKvSK0dkiQuXBH-v94SqtNBKkYqgcOFg2d7Z4GjXDvZuqvx7HFKilgsnW_ab5xnPVNVrgucEY_retNs8p5hyjGVNn1WnlDRqxhTnzx_tT6rznNcYYyJYzYl6WZ0wJbGQNT-tflz6ZBxaxAAZmdCiLzEO6A6GDSQzTgnQ59ib5McY0NJkH1boautbCA5a5EMJQbdpZYJ36Lo4di4OtoDj6B28ql50ps9w_rCeVd8-Xt0trmfL2083i4vlzAnK5awmgLu6cZa0FotGcSj14K4hDYXOUmGVFZbUDWbUWQs1Y8CsMVwqXEvSUnZW3Ry8bTRrvUl-MGmno_H6z0FMK21SSagH7awQrCvuTgkuBSgmWqAMM2wpq50trg8H12ayA7QOwphM_0T69Cb4n3oVt5oQIgiW-2zePRhS_DVBHvXgs4O-NwHilHV5THFakt-jb_9B13FKofxVoSQXpbOqKdT8QLkUc07QHbMhWO_nQO_nQB_noAS8eVzDEf_b9QLwA3Dve9j9R6cvLr9_VZhJ9huHvbz-</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Betzold, Simon</creator><creator>Düreth, Johannes</creator><creator>Dusel, Marco</creator><creator>Emmerling, Monika</creator><creator>Bieganowska, Antonina</creator><creator>Ohmer, Jürgen</creator><creator>Fischer, Utz</creator><creator>Höfling, Sven</creator><creator>Klembt, Sebastian</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1465-6591</orcidid><orcidid>https://orcid.org/0000-0002-4387-8708</orcidid><orcidid>https://orcid.org/0000-0001-9217-1832</orcidid><orcidid>https://orcid.org/0000-0002-1431-5535</orcidid><orcidid>https://orcid.org/0000-0003-3107-4574</orcidid><orcidid>https://orcid.org/0000-0003-0034-4682</orcidid></search><sort><creationdate>20240601</creationdate><title>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</title><author>Betzold, Simon ; Düreth, Johannes ; Dusel, Marco ; Emmerling, Monika ; Bieganowska, Antonina ; Ohmer, Jürgen ; Fischer, Utz ; Höfling, Sven ; Klembt, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrons</topic><topic>Energy</topic><topic>Glass substrates</topic><topic>Graphene</topic><topic>Ion beams</topic><topic>Lasers</topic><topic>Light</topic><topic>microcavities</topic><topic>optical lattices</topic><topic>organic semiconductors</topic><topic>polariton lasers</topic><topic>Proteins</topic><topic>quantum simulation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betzold, Simon</creatorcontrib><creatorcontrib>Düreth, Johannes</creatorcontrib><creatorcontrib>Dusel, Marco</creatorcontrib><creatorcontrib>Emmerling, Monika</creatorcontrib><creatorcontrib>Bieganowska, Antonina</creatorcontrib><creatorcontrib>Ohmer, Jürgen</creatorcontrib><creatorcontrib>Fischer, Utz</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Klembt, Sebastian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betzold, Simon</au><au>Düreth, Johannes</au><au>Dusel, Marco</au><au>Emmerling, Monika</au><au>Bieganowska, Antonina</au><au>Ohmer, Jürgen</au><au>Fischer, Utz</au><au>Höfling, Sven</au><au>Klembt, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>21</issue><spage>e2400672</spage><epage>n/a</epage><pages>e2400672-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many‐body effects, and phenomena arising from non‐trivial topology. Exciton‐polaritons, bosonic part‐light and part‐matter quasiparticles, combine pronounced nonlinearities with the possibility of on‐chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many‐body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra‐stable Frenkel excitons. A well‐controlled, high‐quality optical lattice is implemented that accommodates light‐matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state‐of‐the‐art inorganic semiconductor‐based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non‐Hermitian optics.
This study presents a precisely controlled 2D optical lattice for the study of exciton‐polaritons at room‐temperature, using a fluorescent protein in a microcavity to achieve excellent cavity quality and showcase polariton lasing. Providing insights into nonlinear many‐body physics and bosonic condensation, with potential applications e.g. in topological lasers, this work marks a notable step forward in the advancement of room temperature photonic and polaritonic lattice physics, opening avenues for diverse optoelectronic devices.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>38605674</pmid><doi>10.1002/advs.202400672</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1465-6591</orcidid><orcidid>https://orcid.org/0000-0002-4387-8708</orcidid><orcidid>https://orcid.org/0000-0001-9217-1832</orcidid><orcidid>https://orcid.org/0000-0002-1431-5535</orcidid><orcidid>https://orcid.org/0000-0003-3107-4574</orcidid><orcidid>https://orcid.org/0000-0003-0034-4682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2024-06, Vol.11 (21), p.e2400672-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cb553ff91f85465e835de23030b237cb |
source | Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central |
subjects | Electrons Energy Glass substrates Graphene Ion beams Lasers Light microcavities optical lattices organic semiconductors polariton lasers Proteins quantum simulation Temperature |
title | Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirac%20Cones%20and%20Room%20Temperature%20Polariton%20Lasing%20Evidenced%20in%20an%20Organic%20Honeycomb%20Lattice&rft.jtitle=Advanced%20science&rft.au=Betzold,%20Simon&rft.date=2024-06-01&rft.volume=11&rft.issue=21&rft.spage=e2400672&rft.epage=n/a&rft.pages=e2400672-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202400672&rft_dat=%3Cproquest_doaj_%3E3064502489%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5246-71e0f79cb1db05984e4000f9192efb25b8b5b179032cbbe733e3baa4680761d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064502489&rft_id=info:pmid/38605674&rfr_iscdi=true |