Loading…

The Contribution of Ski Poles to Aerodynamic Drag in Alpine Skiing

The present study was designed to determine the contribution of the cross-sectional area of the ski poles (Sp) to the total aerodynamic drag during alpine skiing. At three different wind speeds in a wind tunnel, 10 skiers assumed typical alpine skiing postures (high, middle, and tuck), and their fro...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-07, Vol.13 (14), p.8152
Main Authors: Supej, Matej, Kalén, Anton, Verdel, Nina, Ogrin, Jan, Holmberg, Hans-Christer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was designed to determine the contribution of the cross-sectional area of the ski poles (Sp) to the total aerodynamic drag during alpine skiing. At three different wind speeds in a wind tunnel, 10 skiers assumed typical alpine skiing postures (high, middle, and tuck), and their frontal aerodynamic drag was assessed with a force plate and their cross-sectional area, along with that of their ski poles, determined by interactive image segmentation. The data collected were utilized to examine intra-subject variation in Sp, the effects of Sp on the coefficient of aerodynamic drag (Cd), and the product of Cd and total cross-sectional area (Cd∙S. The major findings were as follows: (i) Sp ranged from 0.0067 (tuck position) to 0.0262 m2 (middle position), contributing 2.2–4.8% of the total cross-sectional area, respectively; (ii) Sp was dependent on wind speed in the high and middle positions; (iii) intra-subject variations ranged from 0.0018 m2 (27.6%) in the tuck position to 0.0072 m2 (30.5%) in the high position; (iv) Sp exerted a likely effect on Cd and Cd∙S. The extensive intra- and inter-skier variability in Sp can account for as much as ~5% of the total frontal cross-sectional area and future investigations on how elite skiers optimize their positioning of the poles in a manner that reduces aerodynamic drag are warranted.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13148152